Aas, K. & Haff, I. (2006). The Generalized Hyperbolic Skew Student’s t-Distribution. Journal of Financial Econometrics 4(2): 275–309.
Balkema, A. A. & de Haan, L. (1974). Residual Life Time at Great Age. Annals of Probability, 2(5): 792-804.
Barndorff-Nielsen, O. E. & Blæsild, P. (1981). Hyperbolic distributions and ramifications: Contributions to theory and application. Statistical Distributions in Scientific Work, 4: 19-44.
Bassi, F., Embrechts, P. & Kafetzaki, M. (1998).Risk management and Quantile Estimation. In A Practical Guide to Heavy Tails, Adler, R. J., Feldman, F., and Taqqu, M. (eds), 111–130. Birkhäuser.
Beirlant, J., Joossens, E. & Segers, J. (2004). Generalized Pareto Fit to the Society of Actuaries’ Large Claims Database. North American Actuarial Journal 8(2): 108–111.
Beirlant, J. & Teugels, J. (1992). Modeling large claims in non-life insurance. Insurance: Mathematics and Economics, 11 (1): 17-29.
Bolancé, C., Guillen, M., Pelican, E. & Vernic, R. (2008). Skewed Bivariate Models and Nonparametric Estimation for the CTE Risk Measure. Insurance: Mathematics and Economics, 43 (3): 386-393.
Chaing Lee, W. (2012). Fitting Generalized Pareto Distribution to Commercial Fire Loss Severity: Evidence From Taiwan. The Journal of Risk, 14(3): 63-80.
Chava, S., Stefanescu, C. & Turnbull, S. (2008). Modeling the Loss Distribution. Working Paper. Available in: http://faculty.london.edu/cstefanescu/Chava_ Stefanescu_Turnbull.pdf.
Dahen, H., Dionne, G. & Zajdenweber, D. (2010). A Practical Application of Extreme Value Theory to Operational Risk in Banks. The Journal of Operational Risk, 5(2): 1–16.
Dempster, A. P., Laird, N. M. & Rubin, D. (1977). Maximum likelihood from incomplete data using the EM algorithm.Journal of the royal statistical society, Series B, 39 (1): 1–38.
Eling, E. (2012). Fitting Insurance Claims to Skewed Distributions: Are the Skew-Normal and Skew-Student Good Models? Insurance: Mathematics and Economics, 51(2): 239-248.
Embrechts, P., Kluppelberg, S. & Mikosch, T. (1997). Extremal Events in Finance and Insurance. Berlin: Springer.
Embrechts, P., McNeil, A. & Straumann, D. (2002). Correlation and Dependence in Risk Management: Properties and Pitfalls. In: Dempster, M.A.H. (Ed.), Risk Management: Value at Risk and Beyond. Cambridge University Press, Cambridge, 176–223.
Embrechts, P., Resnick, S. I. & Samorodnitsky, G. (1999). Extreme Value Theory as a Risk Management Tool. North American Actuarial Journal, 3(2): 30-41.
Gilli, M. & Kellezi, E. (2006). An Application of Extreme Value Theory for Measuring Financial Risk. Computational Economic, 27(1): 1-23.
Hosking, J.R.M., Wallis, J.R. & Wood, E.F. (1985). Estimation of the generalized extreme value distribution by the method of probability weighted moments. Technometrics, 27(3): 251-261.
Karlis, D. (2002). An EM type algorithm for maximum likelihood estimation of the normal inverse Gaussian distribution. Statistics & Probability Letters, 57(1): 43–52.
Lane, M.N. (2000). Pricing Risk Transfer Transactions. ASTIN Bulletin, 30 (2): 259-293.
Lee, W. C. & Fang, C. J. (2010). The Measurement of Capital for Operational |Risk of Taiwanese Commercial Banks. The Journal of Operational Risk, 5(2): 79-102.
McNeil, A.J. (1997). Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory. ASTIN Bulletin, 27(1):117–137.
McNeil, A. J. & Saladin, T. (1997). The Peaks Over Thresholds Method for Estimating High Quantiles of Loss Distributions. Preprint, Department Mathematik, ETH Zentrum, Zurich.