مدل‎سازی بازارهای مالی با استفاده از فرایند ارنشتاین اولنبگ ترکیبی با نویز لوی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناس ارشد، گروه ریاضی کاربردی، دانشگاه صنعتی ارومیه، ارومیه، ایران.

2 استادیار، گروه ریاضی کاربردی، دانشگاه صنعتی ارومیه، ارومیه، ایران.

چکیده

هدف: پیش‌بینی بازارهای مالی همواره برای فعالان اقتصادی حائز اهمیت بوده است. هدف اصلی این مقاله، ارائه مدل توسعه‌یافته جدید برای مدل‌سازی بازارهای مالی با استفاده از فرایند ارنشتاین اولنبک ترکیبی با نویز لوی است. با استفاده از قیمت‌های بسته شده بازارهای سهام، می‌توان نتیجه گرفت که مدل تصادفی ارنشتاین اولنبک با پارامترهای وابسته به زمان، به‌طور شایان توجهی عملکرد پیش‌بینی قیمت سهام را بهبود می‌بخشد.
روش: ابتدا به بررسی معادله دیفرانسیل تصادفی که از فرایندهای مستقل ارنشتاین اولنبک تشکیل شده است، پرداخته شد. این فرایندها را از طریق فرایند گاما استخراج کردیم، از این رو، آن را فرایند ارنشتاین اولنبک گاما می‌نامیم که کلاسی از فرایندهای زمان پیوسته لوی است و رفتاری با حافظه بلندمدت دارد. برآورد پارامترهای مدل با استفاده از روش حداکثر درست‌نمایی صورت گرفته است.
یافته‌ها: برای نشان‌دادن کارایی مدل ارائه شده، برخی از بازارهای سهام ایران، مانند شرکت‌های سیمان ارومیه، سایپا آذین و پالایش نفت تهران، به‌صورت عددی شبیه‌سازی شدند. پارامترهای فرایند ارنشتاین اولنبک با نویز گاما با استفاده از داده‌های واقعی برآورد شد.
نتیجه‌گیری: نتایج عددی نشان داد که نوسان پیش‌بینی‌شده این شرکت‌ها به نوسان شبیه‌سازی‌شده نزدیک است و در آن دینامیک نوسان از مدلی خودهم‌بسته پیروی می‌کند. مزیت روش یادشده این است که برآوردهای به‌دست‌آمده در اطراف مقدار واقعی پایدارند، از این رو الگوریتم تخمین برای مجموعه داده‌های بزرگ امکان‌پذیر بوده و از خصوصیت هم‌گرایی خوبی برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling Financial Markets Using Combined Ornstein-uhlenbeck Process with Levy Noise

نویسندگان [English]

  • Mina Mohammadi 1
  • Parisa Nabati 2
1 MSc., Department of Applied Mathematics, Faculty of Science, Urmia University of Technology, Urmia, Iran.
2 Assistant Prof., Department of Applied Mathematics, Faculty of Science, Urmia University of Technology, Urmia, Iran.
چکیده [English]

Objective: The main purpose of this paper is to investigate a developed stochastic algorithm for modeling financial markets using the Ornstein-uhlenbeck process combined with Levy noise. Using the closing prices of stock markets, it can be concluded that the stochastic model of the Ornstein-uhlenbeck process with time-dependent parameters significantly improves the performance of stock price forecasting.
Methods: At first, we study the stochastic differential equation that is composed of Ornstein-uhlenbeck independent processes. Since these processes are extracted by the gamma process, we call it the gamma Ornstein-uhlenbeck process, We used a stochastic differential equation under the combination of two independent processes and simulate the time series data.  The parameter estimation is done using the maximum likelihood estimator.
Results: To illustrate the performance of the proposed model, we apply the desired stochastic differential equation for a set of financial time series from Tehran Oil Refining Company, Saipa Azin, and the Cement of Urmia stock exchanges. The simulated data mimics the original financial time series data. This is observed from the estimates of root mean square error criteria.
Conclusion: Numerical results show that the predicted volatility of these companies is close to the simulated ones. The advantage of this methodology is the fact that the estimates obtained are stable around the true value and also the low errors indicate that the estimation procedure is accurate, therefore producing a higher forecasting accuracy. Thus, the proposed estimation algorithm is suitable with large data sets and has good convergence properties.

کلیدواژه‌ها [English]

  • Financial markets
  • Levy process
  • Ornstein-uhlenbeck model
  • Stochastic volatility
جنابی، امید؛ دهمره قلعه نو، نظر (1398). قیمت‌گذاری اوراق تبعی با استفاده از مدل هستون کسری پرشی. تحقیقات مالی، 21(3)، 392-416.
حسینی ابراهیم آباد، سید علی؛ حیدری، حسن؛ جهانگیری، خلیل؛ قائمی اصل، مهدی (1398). استفاده از رویکرد بیزی برای مطالعه همبستگی متغیر با زمان میان شاخص‌های منتخب بورس اوراق بهادار تهران. تحقیقات مالی، 21(1)، 59-78.
راعی، رضا؛ باجلان، سعید؛ عجم، علیرضا (1400). بررسی کارایی مدل 1/N در انتخاب پرتفوی. تحقیقات مالی، 23(1)، 1-16.
راعی، رضا؛ باسخا، حامد؛ مهدیخواه، حسین (1399). بهینه‌سازی سبد سهام با استفاده از روش Mean-CVar و رویکرد ناهم‎سانی واریانس شرطی متقارن و نامتقارن. تحقیقات مالی، 22(2)، 149-159.
رحمانی، مرتضی؛ جعفریان، ناهید (1396). بررسی مدل بلک شولز کسری با توان هرست روی اختیار معامله اروپایی با هزینه‎های معاملاتی. مهندسی مالی و مدیریت اوراق بهادار، 8(32)، 43-62.
فرنوش، رحمان؛ نباتی، پریسا؛ عزیزی، معصومه (1395). شبیه‎سازی و پیش‎بینی قیمت نفت اوپک با استفاده از معادلات دیفرانسیل تصادفی. پژوهش‌های نوین در ریاضی، 2(7)، 21-30.
نیسی، عبدالساده؛ پیمانی، مسلم (1393). مدل سازی شاخص کل بورس اوراق بهادار تهران با استفاده از معادله دیفرانسیل تصادفی هستون. پژوهشنامه اقتصادی، 14(53)، 143-166.
ولیدی، جواد؛ نجفی، امیرعباس؛ ولیدی، علیرضا (1399). انتخاب برخط سبد سرمایه‎گذاری به کمک الگوریتم‎های تبعیت از بازنده. تحقیقات مالی، 22(3)، 408-427.
References
Barlev, S., Bshouty, D. & Letac, G. (1992). Natural exponential families and selfdecomposability, Statistics and probability letters, 13, 147-152.
Barndorff-Nielsen, O. & Shephard, N. (2000). Financial volatility, Lévy processes and power variation.
Barndorff-Nielsen, O. & Shephard, N. (2001). Non-Gaussian Ornstein - Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society, 63, 167-241.
Breidt, C. & Lima, D. (1998). The detection and estimation of long memory in stochastic volatility models, J. Econometrics, 83, 325-348.
Brockman, P. & Chowdhury, M. (1997). Deterministic versus stochastic volatility: implications for option pricing models. Applied Financial Economics, 7, 422-505.
Comte, F. & Renault, E. (1998). Long memory in continuous time stochastic volatility models. Mathematical Finance, 8(4), 291-323.
Cufaro-Petroni, N. & Sabino, P. (2017). Coupling Poisson processes by self-decomposability. Mediterranean J Math. 14(2):69.
Franoosh, R., Nabati, P. & Azizi, M. (2016). Simulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations, Journal of new researches in mathematics, 2(7), 21-30. (in Persian)
Grigoriu, M. (2002). Stochastic Calculus, Springer.
Harvey, A. C. (1998). Long-memory in stochastic volatility. Butterworth - Heinemann, 307- 320.
Hoseini Ebrahimabad, S. A., Heydari, H., Jahangiri, Kh., Ghaemi Asl, M. (2019). Using Bayesia Approach to Study the Time Varying Correlation among Selected Indices of Tehran Stock Exchange. Financial Research Journal, 21(1), 59-78. (in Persian)
Jenabi, O. & Dahmarde Ghaleno, N. (2019). Subordinate Shares Pricing under Fractional-Jump Heston Model. Financial Research Journal, 21(3), 392- 416. (in Persian)
Jurek, Z. J. & Vervaat, W. (1983). An integral representation for self decomposable Banach space valued random variables, Zeitschrift für Wahrscheinlichkeisheorie and verwandte Gebiete, 62, 247-262.
Mariani, M., Masum, B. & Tweneo, O. (2018). Estimation of stochastic volatility by using Ornstein–Uhlenbeck type models. Physica A: Statistical mechanics and its application, 491, 167-176.  
Nisi, A. & Peymani, M. (2014). Modeling the index of Tehran Stock Exchange using Heston's stochastic differential equation. Economic Research, 14 (53), 166-143. (in Persian)
Oksendal, B. (2010). Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag, Heidelberg, New York.
Raei, R., Bajalan, S. & Ajam, A. (2021). Investigating the Efficiency of the 1/N Model in Portfolio Selection. Financial Research Journal, 23(1), 1-16. (in Persian)
Raei, R., Basakha, H. & Mahdikhah, H. (2020). Equity Portfolio Optimization Using Mean-CVaR Method Considering Symmetric and Asymmetric Autoregressive Conditional Heteroscedasticity. Financial Research Journal, 22(2), 149-159. (in Persian)
Rahmani, M., Jafarian, N. (2017). Survey on fractional Black-sholes with hurst exponent on European option with transaction cost. Financial Engineering and Portfolio Management.  8(32), 43-62. (in Persian)
Rao, J. & Taufer, E. (2019), Semi-parametric estimation of the autoregressive parameter in non-Gaussian Ornstein–Uhlenbeck processes. Communications in Statistics - Simulation and Computation, 1-23.
Rubio, F. J. & Johansen, A. M. (2013). A simple approach to maximum intractable likelihood estimation. Electronic Journal of Statistics, 7, 1632-1654.
Sabino, P. & Petroni, N. C. (2020). Gamma-related Ornstein–Uhlenbeck processes and their simulation. Journal of Statistical Computation and Simulation, 91(6), 1108-1133.
Spiliopoulos, K. (2009). Method of Moments Estimation of Ornstein-Uhlenbeck Processes Driven by General Levy Process. ANNALES de l’I.S.U.P., 53, 3-19.
Taylor, S. (1992). Financial returns modeled by the product of two stochastic processes, A study of daily sugar prices, Time Series Analysis: Theory and Practice, 1, 203-226.
Tweneboah, O. K. (2015). Stochastic differential equation applied to high frequency data arising in geophysics and other disciplines. ETD Collection for University of Texas, El Paso Paper AA11600353.
Valdivieso, L., Schoutens, W., & Tuerlinckx, F. (2009). Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type, Stat Infer Stoch Process, 12, 1-19.
Validi, J., Najafi, A. A., & Validi, A. (2020). Online Portfolio Selection Based on Follow-the-Loser Algorithms. Financial Research Journal, 22(3), 408-427. (in Persian)