طراحی مدل بومی رتبه‌بندی بانک‌های ایرانی بر مبنای سلامت بانکی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه حسابداری، دانشکدۀ حسابداری و مدیریت، دانشگاه علامه طباطبائی، تهران، ایران

2 استادیار گروه مدیریت مالی و بانکداری، دانشکدۀ حسابداری و مدیریت، دانشگاه علامه طباطبائی، تهران، ایران

3 دانشجوی کارشناس ارشد مدیریت مالی، دانشکدۀ حسابداری و مدیریت، دانشگاه علامه طباطبائی، تهران، ایران

چکیده

این پژوهش با هدف ارائۀ مدل بومی برای رتبه‎بندی بانک‎های ایرانی بر مبنای سلامت و ثبات بانکی، به‎منظور سنجش سلامت و ثبات بانک‎های فعال در نظام بانکی کشور اجرا شده است. به این منظور نخست با مطالعۀ ادبیات موضوعی پژوهش، مدل پیشنهادی تحقیق طراحی شد و پس از اعتبارسنجی به روش دلفی فازی، عوامل مدل نهایی با شش بعد و 26 مؤلفه شناسایی شدند. در ادامه با استفاده از فرایند تحلیل شبکه­ای و روش دیمتل، ضریب اهمیت هر یک از این عوامل به‎دست آمد و بدین ترتیب مدل نهایی ارائه شد. در ادامه بانک‎های بورسی و فرابورسی فعال در نظام بانکی کشور، بر مبنای صورت­های مالی حسابرسی شدۀ سال 1393، با استفاده از مدل ارائه شده و روش تاپسیس رتبه‎بندی شدند. نتایج به‎دست آمده نشان می‎دهد، به ترتیب بانک­های پاسارگاد، خاورمیانه، کارآفرین، دی و سینا در سال 93 عملکرد مطلوب­تری نسبت به سایر بانک­های مورد مطالعه داشته‎اند.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a model for rating of Iranian banks based on soundness.

نویسندگان [English]

  • Mohammad Javad Salami 1
  • Mohammad Hasan Ebrahimi Sarvolia 2
  • Shiva Ghasempour 3
1 Assistant Prof. in Accounting, Faculty of Accounting and Management, Allameh Tabatabai University, Tehran, Iran
2 Assistant Prof., Faculty of Accounting and Management, Allameh Tabatabai University, Tehran, Iran
3 MSc. Student in Financial Management, Faculty of Accounting and Management, Allameh Tabatabai University, Tehran, Iran
چکیده [English]

This research aims to develop a domestic model to rank Iranian banks based on their function to evaluate soundness and stability. For this purpose, after studying the related literature, a model with six dimensions and thirty factors is designed and validated using Delphi-Fuzzy method. This resulted in a model with six dimension and twenty six factors. Then, using network analysis and applying Dematel technique, the final model and the weights of each factor were determined. We used the model to evaluate the performance of the several banks in year 1393. And then they were ranked by using TOPSIS technique. The results show that Pasargad, Khavarmiyane, Karafarin, Dey and Sina banks had better function in comparison to other studied banks in 1393..

کلیدواژه‌ها [English]

  • : bank rating
  • Delfi-Fazzy
  • soundness
  • network analysis
  • Topsiss
Abasgholipour, M. (2009). Factors affecting the performance of banks. Journal of banks and the economy, 106 (2), 46- 35. (in Persian)
Abbasi, A. & Mohamadi, A. & Estejab, E. (2014). Presenting an Appropriate Pattern to Determine Attractive Companies for Investment (Case Study: Registered Companies in Tehran Stock Exchange and Active in Chemical Industries. Journal of financial research, 17(2), 301-324. (in Persian)
Ahmadian, A. (2013). Evaluating the performance of the banking industry in Iran. Working Paper of Monetary and Banking research institute, 10 (1), 1-110.
(in Persian)
Babar, H. Z. (2011). Camels rating system for banking industry in Pakistan, Umea School of Business in Sweden.
Barr, R. K. & Siems, T. & Zimmel, SH (1999). Evaluating the productive efficiency and performance of U.S. Commercial banks. National Science Foundation journal, 29 (2), 112-145.
Bhandari, A. N. (2014). Performance evaluation of commercial banks in Nepal using AHP. International Journal of the Analytic Hierarchy Process, 14 (1), 1-25.
Chiu, W. & Tzeng, G. H. & Lin Li, H. (2013). A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Journal of Knowledge-Based Systems, 37 (2), 48–61.
Cole, R. (1998). Predicting bank failures: A comparison of on- and off-site monitoring systems. Journal of Financial Services Research, 3 (9), 103-117.
Dang, U. (2011). The camel rating system in banking supervision a case study. Arcada University of Applied Sciences in Finland.
Eslami, Z. & Bahramizonozi, M. & Mihani, M. (2010). The necessity of compiling ratings of the banks and the proposed model. Research Center of Sepah banks.
Fadvi, A. & Adakh, E. (2013). Performance evaluation and ranking of banking service provider they are using multi-criteria decision-making techniques. Management and development of future studies Conference, Shiraz, Iran's development of a new training center Mtana. (in Persian)
Ferrouhi, E. M. (2014). Moroccan banks analysis using camel model. International Journal of Economics and Financial Issues, 12(3), 622-627.
Gabus, A. & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Switzerland, Geneva: Battelle Geneva Research Centre.
Ghazi Nouri, S. & Tabatabaeyan, H. (2002). Sensitivity analysis of multi-criteria decision problems than the kind of techniques used in a case study. Journal of Knowledge Management, 18(6): 129-141. (in Persian)
Gunsel, N. (2012). Micro and macro determinants of bank fragility in north Cyprus economy. African Journal of Business Management, (6), 1323-1329.
Habibi, A. & Izadyar, S. & Sarafrazi, A. (2014). Fuzzy Multi-Criteria Decision Making, published by Gale inscription. Tehran: Katibe Gil press. (in Persian)
Hunjak, T. J. (2001). AHP based model for bank performance evaluation and rating. Journal of the operational research society, (12), 130-149.
Kabir, A. (2012). Performance analysis through camel rating: A comparative study of selected private commercial banks in Bangladesh. Journal of Politics & Governance, (1), 16-25.
Kumar, M. & Anand, A. & Dhruva, N. R. (2012). Analyzing soundness in Indian banking: A camel approach. Research Journal of Management Sciences, 1(3), 9-14.
Madura, J. Z. (1995). Bank Exposure to Interest Rate Risk: A Global Perspective. Journal of Financial Research, 53(1), 1-13.
Mahdian, D. & Asadi Afshordi, A. (2014). Causes and consequences and ways of dealing with mismanagement of banks and financial institutions. Tabriz: Kahkeshan Danesh press. (in Persian)
Mousavi, J. & Kazemi, A. (2013). Ranking Iranian private banks using Multiple Attribute Decision Making. Journals of Few studies in management 4(3), 121-140. (in Persian)
Nemati, M. & Kazemi, A. (2014). Ranking of insurance companies using multi attribute decision making methods. Journal of financial research, 16(1), 1163-1180. (in Persian)
Nil, G. (2012). Financial ratios and the probabilistic prediction of bank failure in north Cyprus. European Journal of Scientific Research, (18), 191-200.
Ongore, V. O. (2013). Determinants of financial performance of commercial banks in Kenya. International Journal of Economics and Financial Issues, (3), 237-252.
Oztorul, G. (2011). Performance evaluation of banks and banking groups: Turkey case. M.S., Middle East technical university in Ankara.
Prasad, K. V. (2012). A camel model analysis of nationalized banks in India. International journal of trade and commerce-iiartc January, (1), 23-33.
Rakocevic, C. (2007). Analysis of the efficiency of banks in Montenegro using the AHP. Journal of the Operational Research Society, 47(3), 980-988.
Rezanejad, A. (2009). Financial ratios for evaluation banking performance. Journal of banks and the economy, 110 (6), 50-45. (in Persian)
Romana, A. S. (2013). Analysing the financial soundness of the commercial banks in Romania: An approach based on the camels framework. Journal of Procedia Economics and Finance, 6(1), 703 – 712.
Ruchi Gupta, C. (2014). An analysis of Indian public sector banks using camel approach. Journal of business and management, 5(16): 94-102.
Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48(15), 9-26.
Sadeghimoghadam, M. & Alibakhshi, R. & Khalili, E. (2014). An Assessment of Selected Mutual Funds in Iran Stock Market Using a Combined Method of TOPSIS, VIKOR and Similarity-Based Approach. Journal of financial research, 17(2), 282-259. (in Persian)
Saghafi, A. & Saif, A. (2005). Recognition and Measurement of Financial and fundamental economic variables affecting the health and stability of the banking system in Iran. Journal of Economic Research, 17(3), 65-112.
(in Persian)
Sandhya, C. V. L. (2014). Camel framework in banks - Indian scenario. Indian journal of applied research, 4(6), 45-59.
Sangmi, M. & Tabassum, N (2010). Analyzing Financial Performance of Commercial Banks in India: Application of CAMEL Model. Pakistan Journal Commercial Social Science, 42(11), 45-59.
Sarker, A. A. (2005). CAMEL Rating System in the Context of Islamic Banking: A Proposed 'S for Shariah Framework. Journal of Islamic Economics and Finance, 14(1), 78-84
Soltani, M. & Esmaili, M. & Hassanpoor, M. (2013). Evaluating the Performance of Public and Private Banks and Providing Suggestions for Improving the Performance of Them (Case study: Melli, Agriculture, Pasargad and Parsian Bank of Qom). Journal of Basic and Applied Scientific Research, 3(2), 480-487.
Sundararajan, V. E. C. & San José, A. (2002). Financial soundness indicators: Analytical aspects and country practices. Washington, International Monetary Fund, Publication Services.
Trivedi, A. R. & Elahi, Y.A. (2015). A comparative analysis of performance of public & private sector banks in India through camel rating system. International journal of applied financial management perspectives, 4 (3), 1724-1736.
Zebardast, E. (2010). Application of Analytical Hierarchy Process in Urban and Regional Planning. Journals of fine arts, 12(5), 79-90. (in Persian)