به‌کارگیری روشی مبتنی بر گراف برای شناسایی نقاط عطف بهینه سری زمانی مالی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی صنایع، دانشکده مهندسی صنایع و سیستم‏ها، دانشگاه صنعتی اصفهان، اصفهان، ایران.

2 استادیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه صنعتی اصفهان، اصفهان، ایران.

3 استاد، گروه مهندسی صنایع، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه صنعتی اصفهان، اصفهان، ایران.

چکیده

هدف: اتخاذ استراتژی معاملاتی سودده، یکی از دغدغه‌های سرمایه‌گذاران بازار مالی است. این استراتژی، بر پایه نقاط معاملاتی یا نقاط عطفِ سودده شکل می‌گیرد و لازمه دستیابیِ به آن، پیش‌بینی نقاط عطف است. گام نخست در راستای پیش‌بینی نقاط عطف، شناسایی نقاط عطف موجود در گذشته سری زمانی است. میزان سوددهی نقاط عطف پیش‌بینی‌شده، به میزان سوددهی نقاط عطف شناسایی شده بستگی دارد. به همین دلیل، ادبیات موضوع همواره در راستای ارتقای عملکرد روش‌های شناسایی نقاط عطف یا افزایش میزان سوددهی نقاط عطف شناسایی شده، تلاش کرده است. با این حال تا جایی ‏که می‌دانیم، هیچ‌یک از روش‌های موجود، قابلیت شناسایی سودده‌ترین نقاط عطف یا نقاط عطف بهینه را ندارد. مقاله حاضر، با هدف برطرف‌سازی این شکاف تحقیقاتی تدوین شده است.
روش: مدل پیشنهادی در این مقاله، با پیاده‌سازی مسئله شناسایی نقاط عطف در بستر گراف و حل آن با جست‌وجوی طولانی‌ترین مسیر، نقاط عطف بهینه را شناسایی می‌کند.
یافته‌ها: مدل پیشنهادی، بر خلاف روش‌های شناسایی موجود در ادبیات، قابلیت شناسایی نقاط عطف بهینه موجود در گذشته سری زمانی مالی را دارد.
نتیجه‌گیری: به‌منظور نشان‌دادن عملکرد مدل پیشنهادی، ابتدا مدل روی بازارهای بورس نزدک و نیویورک پیاده‌سازی و نتایج آن با بهترین مدل‌های شناسایی موجود در ادبیات موضوع مقایسه شد. نتایج به‌دست‌آمده، برتری عملکرد مدل پیشنهادی را نسبت به سایر مدل‌ها نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Using a Graph-based Method for Detecting the Optimal Turning Points of Financial Time Series

نویسندگان [English]

  • Fateme Yazdani 1
  • Mehdi Khashei 2
  • Seyed Reza Hejazi 3
1 MSc., Department of Industrial, Faculty of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran.
2 Assistant Prof., Department of Industrial, Faculty of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran.
3 Prof., Department of Industrial, Faculty of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Objective: One of the concerns of financial market investors is adopting a profitable trading strategy, which is based on profitable turning points (TPs). To achieve this target, it is necessary to predict TPs. The first step for predicting TPs is to detect TPs from the history of the corresponding time series. The profitability of the predicted TPs depends on the profitability of the detected TPs. Hence, the academic literature has always tried to enhance the performance of TPs detection methods or improve the profitability of the detected TPs. Yet, to the best of our knowledge, none of the existing methods can detect the most profitable and optimal TPs. The current paper aims to fill this research gap.
Methods: Our proposed method seeks the optimal TPs from the history of time series, by implementing the detection problem in the context of the graph and solving it by searching the longest path.
Results: The proposed graph-based TPs detection method, in contrast to the existing detection methods, is able to detect the optimal TPs from the history of the corresponding financial time series. The optimality of this method is based on its graph-based specific structure. In this method, the only potentially valuable trading points (breakpoints, i.e., BPs) are considered as the corresponding graph's vertices and connections between the entire pair of BPs form the corresponding graph's edge set. Considering the vertex and edge set, the proposed graph-based TPs detection method optimizes the detection process, by finding the longest path existing in the corresponding graph and extracting the vertices existing in the longest path (as the optimal TPs). It is worth noticing that due to the structure of the corresponding graph, the longest path is equal to the most profitable set of BPs and the most profitable trading strategy available in the history of time series. Hence, the vertices existing in the longest path are the most profitable and the optimal TPs.
Conclusion: To evaluate the performance of the proposed graph-based TPs detection method, it was applied to real-world data set, and thereafter its detection results were benchmarked against other detection models. Constraints considered for modeling the proposed graph-based TPs detection method were applied to the comparative detection models, as well. These constraints included the possibility of short-selling the financial asset, the impossibility of detecting consecutive buying or selling TPs, and considering no time value for the investment money. Results from applying the proposed method to NASDAQ and New York Stock Exchange indicated the efficiency of the proposed method in the problem of detecting the optimal TPs. Besides, comparison results revealed the superiority of the proposed graph-based TPs detection method, in comparison with other detection models available in the existing literature.

کلیدواژه‌ها [English]

  • Financial time series
  • Graph
  • Optimal
  • Trading strategy
  • Turning points (TPs) detection
پیمانی فروشانی، مسلم؛ ارضا، امیرحسین؛ صالحی، مهدی و صالحی، احمد (۱۳۹۹). بازدهی معامله‏ها بر اساس نمودارهای شمعی در بورس اوراق بهادار تهران. تحقیقات مالی، ۲۲(۱)، 69-89.
راﻋﻲ، رضا؛ ﺑﺎﺟﻼن، سعید و عجم، علیرضا (۱۳۹۹). بررسی کارایی مدل 1/N در انتخاب پورتفوی. تحقیقات مالی، ۲۳(۱)، 1-16.
سیف، سمیرا؛ جمشیدی نوید، بابک؛ قنبری، مهرداد؛ اسماعیلی پور، منصور (۱۳۹۹). پیش‏بینی روند بورس سهام ایران با استفاده از نوسان نمای موج الیوت و شاخص قدرت نسبی. تحقیقات مالی، 23(۱)، 134-157.
طباطبائی، سید جلال و پاک گوهر، علیرضا (۱۳۹۹). مدل‏سازی سری زمانی مقادیر فرین بر اساس رویکرد تحلیل طیفی. تحقیقات مالی، ۲۲(۴)، 594-611.
 
References
Bahar, H. H., Zarandi, M. H. F. & Esfahanipour, A. (2016). Generating ternary stock trading signals using fuzzy genetic network programming. Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), El Paso, Institute of Electrical and Electronics Engineers.
Birbeck, E. & Cliff, D. (2018). Using Stock Prices as Ground Truth in Sentiment Analysis to Generate Profitable Trading Signals. Symposium Series on Computational Intelligence (SSCI), Bengaluru, Institute of Electrical and Electronics Engineers.
Chang, P.-C., Fan, C.-Y. & Lin, J. L. (2011). Trend discovery in financial time series data using a case based fuzzy decision tree. Expert Systems with Applications, 38 (5), 6070-6080.
Chang, P.C., Liao, T. W., Lin, J.J. & Fan, C.-Y. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, 11 (5), 3998-4010.
Chang, P.C., Liu, C.H., Fan, C.Y., Lin, J. L. & Lai, C.M. (2009). An ensemble of neural networks for stock trading decision making. International Conference on Intelligent Computing, Heidelberg, Springer.
Chen, X. & He, Z.-J. (2015). Prediction of stock trading signal based on support vector machine. 8th International Conference on Intelligent Computation Technology and Automation (ICICTA), Nanchang, Institute of Electrical and Electronics Engineers.
Chen, Y., Mabu, S., Shimada, K. & Hirasawa, K. (2009). A genetic network programming with learning approach for enhanced stock trading model. Expert Systems with Applications, 36 (10): 12537-12546.
Chiang, C.-W., Lin, J.-B., Chen, C.-m. & Lin, Y.-T. (2016). Backpropagation neural network model for stock trading points prediction. International Research Journal of Applied Finance, 7 (10): 254-266.
Chou, Y.-H., Kuo, S.-Y. & Kuo, C. (2014). A dynamic stock trading system based on a multi-objective quantum-inspired tabu search algorithm. International Conference on Systems, Man, and Cybernetics (SMC), San Diego, Institute of Electrical and Electronics Engineers.
Dash, R. & Dash. P. K. (2016). A hybrid stock trading framework integrating technical analysis with machine learning techniques. The Journal of Finance and Data Science, 2 (1), 42-57.
Ghazali, R., Hussain, A. J. & Liatsis, P. (2011). Dynamic Ridge Polynomial Neural Network: Forecasting the univariate non-stationary and stationary trading signals. Expert Systems with Applications, 38 (4), 3765-3776.
Grillenzoni, C. (2012). Evaluation of recursive detection methods for turning points in financial time series. Australian & New Zealand Journal of Statistics, 54 (3), 325-342.
Grillenzoni, C. (2014). Sequential smoothing for turning point detection with application to financial decisions. Applied Stochastic Models in Business and Industry, 30 (2), 132-140.
Huang, H., Pasquier, M. & Quek, C. (2009). Financial market trading system with a hierarchical coevolutionary fuzzy predictive model. IEEE transactions on Evolutionary Computation, 13 (1), 56-70.
Izumi, Y., Yamaguchi, T., Mabu, S., Hirasawa, K. & Hu, J. (2006). Trading rules on the stock markets using genetic network programming with candlestick chart. International Conference on Evolutionary Computation, Vancouver, Institute of Electrical and Electronics Engineers.
Kayal, A. (2010). A neural networks filtering mechanism for foreign exchange trading signals. International Conference on Intelligent Computing and Intelligent Systems, Xiamen, Institute of Electrical and Electronics Engineers.
Kordos, M. & Cwiok, A. (2011). A new approach to neural network based stock trading strategy. International Conference on Intelligent Data Engineering and Automated Learning, Heidelberg, Springer.
Kuo, S.-Y., Kuo, C. & Chou, Y.-H. (2013). Dynamic stock trading system based on quantum-inspired tabu search algorithm. Congress on Evolutionary Computation, Cancun, Institute of Electrical and Electronics Engineers.
Li, X. & Deng, Z. (2007). A machine learning approach to predict turning points for chaotic financial time series. 19th International Conference on Tools with Artificial Intelligence (ICTAI 2007), Patras, Institute of Electrical and Electronics Engineers.
Lin, N., Xu, W., Zhang, X. & Lv, S. (2014). Can Web News Media Sentiments Improve Stock Trading signal Prediction?. The 18th Pacific Asia Conference on Information Systems (PACIS 2014), Chengdu, Association for Information Systems (AIS).
Lohpetch, D. & Corne, D. (2009). Discovering effective technical trading rules with genetic programming: Towards robustly outperforming buy-and-hold. World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, Institute of Electrical and Electronics Engineers.
Luo, L., You, S., Xu, Y. & Peng, H. (2017). Improving the integration of piece wise linear representation and weighted support vector machine for stock trading signal prediction. Applied Soft Computing, 56 (3), 199-216.
Mabu, S. & Hirasawa, K. (2011). Enhanced rule extraction and classification mechanism of genetic network programming for stock trading signal generation. Proceedings of the 13th annual conference on Genetic and evolutionary computation, Dublin, Association for Computing Machinery.
Oladimeji, I. W. (2016). Forecasting Shares Trading Signals With Finite State Machine Variant. Multidisciplinary Engineering Science and Technology, 3 (4), 4488-4493.
Peymany Foroushany, M., Erzae, A. H., Salehi, M., & Salehi, A. (2020). Trades Return Based on Candlestick Charts in Tehran Stock Exchange. Financial Research Journal, 22 (1), 69-89. (in Persian)
Potvin, J.-Y., Soriano, P. & Vallée, M. (2004). Generating trading rules on the stock markets with genetic programming. Computers & Operations Research, 31 (7), 1033-1047.
Putra, E. F. & Kosala, R. (2011). Application of artificial neural networks to predict intraday trading signals. Proceedings of the 10th WSEAS international conference on E-Activities, Jakarta, World Scientific and Engineering Academy and Society (WSEAS).
Qi, M. & Maddala, G. (1999). Economic factors and the stock market: a new perspective. Journal of Forecasting, 18 (3), 151-166.
Raei, R., Bajalan, S., & Ajam, A. (2021). Investigating the Efficiency of the 1/N Model in Portfolio Selection. Financial Research Journal, 23 (1), 1-16. (in Persian)
Seif, S., Jamshidinavid, B., Ghanbari, M., & Esmaeilpour, M. (2021). Predicting Stock Market Trends of Iran Using Elliott Wave Oscillation and Relative Strength Index. Financial Research Journal, 23 (1), 134-157. (in Persian)
Tabatabaei, S. J., & Pakgohar, A. (2021). Time Series Modeling of Extreme Losses Values Based on a Spectral Analysis Approach. Financial Research Journal, 22 (4), 594-611. (in Persian)
Tang, C., X. Zheng, Yu, X., Chen, C. & Zhu, W. (2018). Design and Research of Intelligent Quantitative Investment Model Based on PLR-IRF and DRNN Algorithm. 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, Institute of Electrical and Electronics Engineers.
Tang, H., Dong, P. & Shi, Y. (2019). A new approach of integrating piecewise linear representation and weighted support vector machine for forecasting stock turning points. Applied Soft Computing, 78, 685-696.
Vora, M. N. (2011). Genetic algorithm for trading signal generation. International Conference on Business and Economics Research, Kuala Lumpur, International Association of Computer Science and Information Technology (IACSIT).
Wang, J.-H., Chen, S.-M. & Leu, J.-Y. (1997). Stock trading decision support system using a rule selector based on sliding window. International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, Institute of Electrical and Electronics Engineers.
Wang, J.-H. & Leu, J.-Y. (1996). Dynamic trading decision support system using rule selector based on genetic algorithms. Neural Networks for Signal Processing VI. Proceedings of Signal Processing Society Workshop, Kyoto, Institute of Electrical and Electronics Engineers.
Zhu, M. & Wang, L. (2010). Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms. International Joint Conference on Neural Networks (IJCNN), Barcelona, Institute of Electrical and Electronics Engineers.