کاربرد پیش‌بینی احتمالاتی و بهینه‌سازی استوار به‌منظور درنظر گرفتن عدم قطعیت پارامترها دربهینه‌سازی پرتفوی بتای هوشمند

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مالی، دانشکدۀ حسابداری و علوم مالی، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران.

2 دانشجوی کارشناسی ارشد، رشتۀ مدیریت مالی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران.

چکیده

هدف: این پژوهش با استفاده از رویکرد پیش‌بینی احتمالاتی و بهینه‌سازی استوار، به‌منظور در نظر گرفتن‌عدم قطعیت پارامترهای مدل بهینه‌سازی پرتفوی در بازار سرمایه ایران انجام شده است. تمرکز اصلی این پژوهش، بر ارتقای عملکرد پرتفوی با لحاظ‌عدم قطعیت و بهره‌گیری از مدل‌های یادگیری ماشین، برای ساخت پرتفوهایی با نسبت شارپ بیشینه در بازار سرمایۀ ایران است.
روش: در این مطالعه، دو رویکرد رایج به‌منظور در نظر گرفتن‌عدم قطعیت پارامترها در مدل بهینه‌سازی پرتفوی استفاده شده است. نخستین رویکرد رایج، رویکرد بهینه‌سازی استوار است که برای هر پارامتر، یک مجموعۀ‌عدم قطعیت ترسیم می‌کند و مسئله را به‌گونه‌ای تحلیل می‌کند که جواب ایجاد شده در شرایط بدبینانۀ پارامترها نیز بهینه باشد. رویکرد دیگر، مدل یادگیری ماشین پیشرفتۀ تقویت‌سازی گرادیان طبیعی و استفادۀ خروجی آن در رویکرد پیش‌بینی احتمالاتی است. ورودی‌های این مدل، پنج اندیکاتور تکنیکال، از جمله شاخص قدرت نسبی، میانگین متحرک همگرایی/ واگرایی، میانگین محدودۀ واقعی، میانگین موزون قیمت معاملات و مومنتوم در نظر گرفته شده است. تحلیل تکنیکال یکی از رویکردهای اصلی در بررسی و پیش‌بینی روند بازارهای مالی است که بر پایۀ مطالعه و ارزیابی داده‌های تاریخی قیمت و حجم معاملات شکل گرفته است. در این روش فرض بر این است که تمام اطلاعات بنیادی و روانی بازار در قیمت‌ها منعکس می‌شود و حرکت قیمت‌ها، الگوهایی تکرارپذیر و قابل شناسایی ایجاد می‌کنند. این پژوهش در ده صنعت اعم از فلزات اساسی، پالایش فراورده‌های نفتی، بانک و مؤسسه‌های اعتباری، پتروشیمی و مواد شیمیایی، خودرو، سیمان، دارو، فلزات گران‌بها، لاستیک و پلاستیک و کانی‌های فلزی انجام شده است. صنایع نام‌برده، جزء بزرگ‌ترین صنایع بازار سرمایۀ ایران هستند و از منظر ارزش بازار، بخش عمده‌ای از بازار سرمایه را شامل می‌شوند. صنایع یاد شده، طیف گسترده‌ای از حوزه‌های تولیدی و خدماتی را دربرمی‌گیرند که هریک در اقتصاد و توسعۀ صنعتی کشور نقشی بنیادی دارند. در مجموع، هم‌افزایی این صنایع تنوع‌بخشی به اقتصاد، ارزآوری، اشتغال و توسعۀ پایدار را تقویت می‌کند. پس از پیاده‌سازی مدل‌های استوار و پیش‌بینی احتمالاتی در بهینه‌سازی پرتفوی، عملکرد نتایج با دو پرتفوی مبنای وزن برابر و مدل میانگین واریانس مارکوویتز با استفاده از شاخص شارپ مقایسه شد.
یافته‌ها: با در نظر گرفتن داده‌های فروردین ۱۴۰۱ تا فروردین ۱۴۰۳، به‌عنوان داده‌های آموزش (در مدل گرادیان طبیعی تقویت شده) و تخمین پارامترها (در مدل بهینه‌سازی استوار) و داده‌های سال ۱۴۰۳ به‌عنوان تست، پرتفوهای هر ۱۰ صنعت تشکیل و بازده و ریسک آن‌ها با رویکرد خارج از نمونه محاسبه شد. مقایسۀ نتایج پرتفوها نشان داد که هر دو رویکرد ارائه شده در پژوهش، نسبت به پرتفوی‌های مبنا در سطح معناداری ۹۹ درصد، شاخص شارپ بیشتری دارند.
نتیجه‌گیری: این پژوهش نشان داد که استفاده از پیش‌بینی‌های توزیعی به‌جای نقطه‌ای و ترکیب آن با استراتژی‌های بتای هوشمند و همچنین، در نظر گرفتن‌عدم قطعیت پارامترها در مدل‌های بهینه‌سازی پرتفوی، به ساخت پرتفویی با نسبت بازده به ریسک بالاتر منجر می‌شود و این عملکرد برتر در سطح معناداری ۹۹ درصد معنادار است. همچنین بر این اساس می‌توان نتیجه گرفت استفاده از شاخص‌های تکنیکال به‌عنوان عوامل اثرگذار بر بازده، می‌تواند در پیش‌بینی بازده موفق عمل کند و بهره برداری از آن‌ها به‌منظور تشکیل پرتفوی بتای هوشمند، به پرتفویی با عملکرد بهتر منتج می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Probabilistic Forecasting and Robust Optimization for Managing Uncertainty in Smart Beta Portfolio Optimization

نویسندگان [English]

  • Farid Tondnevis 1
  • Hossein Valamehr 2
1 Assistant Prof., Department of Financial Engineering, College of Management, University of Tehran, Tehran, Iran.
2 M.Sc. Student, Department Financial Management, Rudehen, Islamic Azad University, Rudehen, Iran.
چکیده [English]

Objective
This study employs a probabilistic forecasting approach and robust optimization to address parameter uncertainty in portfolio optimization models within the Iranian capital market. The main focus is on enhancing portfolio performance by accounting for uncertainty and utilizing machine learning models to construct portfolios with maximum Sharpe ratios.
 
Methods
Two common approaches are applied to incorporate parameter uncertainty into the portfolio optimization model. The first approach is robust optimization, which defines an uncertainty set for each parameter and analyzes the problem in such a way that the solution remains optimal even under worst-case parameter realizations. The second approach involves an advanced machine learning model, Natural Gradient Boosting (NGBoost), whose outputs were employed within a probabilistic forecasting framework. The model inputs included five technical indicators: Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), Average True Range (ATR), Average Price Trading (ATP), and Momentum. Technical analysis is one of the main approaches in examining and forecasting financial market trends, which is based on the study and evaluation of historical price and trading volume data. This method assumes that all fundamental and psychological information of the market is reflected in prices, and that price movements form recognizable and repeatable patterns. The study is conducted across 10 industries, including basic metals, oil refining, banking and financial institutions, petrochemicals and chemicals, automotive, cement, pharmaceuticals, precious metals, rubber and plastics, and metallic minerals. The aforementioned industries are among the largest sectors of the Iranian capital market and, in terms of market value, constitute a substantial portion of the market. These industries encompass a wide range of production and service domains, each playing a fundamental role in the country’s economy and industrial development. Overall, the synergy of these industries strengthens economic diversification, foreign exchange earnings, employment, and sustainable development. After applying robust and probabilistic forecasting models in portfolio optimization, the results were compared against two benchmark portfolios—an equal-weight portfolio and the Markowitz mean-variance model—using the Sharpe ratio as the evaluation metric.
 
Results
"Using data from March 2022 to March 2024 for training the NGBoost model and estimating parameters for robust optimization, and 2024 data as the test set, portfolios were constructed for all ten industries. Their out-of-sample risk and return were then calculated. The comparison indicated that both proposed approaches significantly outperformed the benchmark portfolios, achieving higher Sharpe ratios at the 99% confidence level.
 
Conclusion
The findings demonstrate that employing distributional rather than point forecasts, combined with smart beta strategies and robust parameter consideration in portfolio optimization, leads to portfolios with superior risk-return trade-offs. This enhanced performance is statistically significant at the 99% level. Furthermore, the results indicate that incorporating technical indicators as explanatory factors for returns can effectively improve return predictability. Leveraging these indicators in smart beta portfolio construction yields portfolios with superior performance.

کلیدواژه‌ها [English]

  • Probabilistic forecasting
  • Robust optimization
  • Natural gradient boost
  • Smart beta
سیفی، عباس؛ حنفی‌زاده، پیام و نوایی، حیدرضا (1383). مدل یک پارچه استوار در انتخاب پرتفوی سهام یک دوره‌ای. تحقیقات مالی، 17، 71-95.
عباسی، میلاد؛ موسوی، سمیه السادات؛ جعفری ندوشن، عباسعلی (1403). شناسایی و ارزیابی قواعد معاملات تکنیکی سودآور در بازار رمزارز با استفاده از روش ترکیبی کیفی ـ کمی. مهندسـی مـالی و مـدیریت اوراق بهـادار ، 3(26)، 525-546.
فلاح‌پور، سعید؛ تندنویس، فرید؛ هاشمی، سید محمد امیر (1394). بهینه‌سازی پرتفوی ردیـاب شـاخص بـا اسـتفاده از مـدل تـک شاخصی پایدار برمبنای شاخص 50 شرکت فعالتر بورس اوراق بهـادار تهـران. مهندسـی مـالی و مـدیریت اوراق بهـادار، 6(24)، 115-134.
فلاح‌پور، سعید و تندنویس، فرید (1393). کاربرد مدل پایدار در انتخاب پرتفوی بهینه سهام. دانش سرمایه‌گذاری، 3 (10)، 67-84.
فلاح‌پور، سعید؛ گل ارضی، غلامحسین؛ فتوره چیان، ناصر (1392). پیش‌بینی روند حرکتی قیمت سهام با استفاده از ماشین بردار پشتیبان برپایۀ الگوریتم ژنتیک در بورس اوراق بهادار تهران. مهندسـی مـالی و مـدیریت اوراق بهـادار ، 2(15)، 269-288.  
محمدی، شاپور؛ تندنویس، فرید؛ محمودی سعیدآباد، الناز (1401). کاربرد ضرایب هم‌بستگی مبتنی بر کاپولا و رویکردهای مبتنی بر برنامه‌ریزی پویا در تعیین شباهت میان‌ سری‌های زمانی به‏منظور خوشه‌بندی و تشکیل پرتفوی مبتنی بر شاخص. فصلنامه بورس اوراق بهادار تهران، 15(60)، 47-72.
محمدی، شاپور؛ راعی، رضا؛ تندنویس، فرید (1400) کاربرد ضرایب هم‌بستگی مبتنی بر کاپولا و اطلاعات متقابل در خوشه‌بندی سری‌های زمانی و تشکیل پرتفوی شاخصی ارتقایافته با استفاده از رویکرد بهینه‌سازی استوار، تحقیقات مالی، 23(4)، 479-522.
 
References
Abassi, M., Mousavi, S. & Jafari Nodoushan, A. (2024). Identification and Evaluation of Profitable Technical Trading Rules in the Cryptocurrency Market: A Mixed Method Approach. Financial Engineering and security Management. 3(26), 525-546. (in Persian)
Agrawal, M., Shukla, P., Nair, R., Nayyar, A. & Masud, M. (2021). Stock prediction based on technical indicators using deep learning model. Computers, Materials & Continua, 70(1), 287.
Ameen Suhail, K. M., Sankar, S., Kumar, A. S., Nestor, T., Soliman, N. F., Algarni, A. D., ... & Abd El-Samie, F. E. (2022). Stock Market Trading Based on Market Sentiments and Reinforcement Learning. Computers, Materials & Continua70(1).
Beasley, J., Meade, N. & Chang, T. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621–643.
Bertsimas, D. & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53.
Chen, W., Zhang, H., Mehlawat, M. K. & Jia, L. (2021). Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing, 100, 106943.
Duan, T., Anand, A., Ding, D. Y., Thai, K. K., Basu, S., Ng, A. & Schuler, A. (2020, November). Ngboost: Natural gradient boosting for probabilistic prediction. In International conference on machine learning (pp. 2690-2700). PMLR.
Fallahpor, S., Golarzi, G. & Fatourechian, N. (2013). Predicting Stock Price Movement Using Support Vector Machine Based on Genetic Algorithm in Tehran Stock Exchange Market. Financial Engineering and security Management, 2(15), 269-288. (in Persian)
Fallahpor, S., Tondnevis, F. & Hashemi,. M.A. (2016). Index tracking portfolio optimization by robust single factor model based on 50 more active company index of TSE. Financial Engineering and security Management, 6(24), 115-134. (in Persian)
Fallahpour, S. & Tondnevis, F. (2014). Robust Model for optimal Portfolio Selection, Investment knowledge Journal 3(10) 67-84. (in Persian)
Gneiting, T. & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application1(1), 125-151.
Huang, C. F. (2012) A hybrid stock selection model using genetic algorithms and support vector regression. Applied Soft Computing, 12(2), 807–818.
Kocuk, B. & Cornuéjols, G. (2020). Incorporating Black-Litterman views in portfolio construction when stock returns are a mixture of normal's. Omega91, 102008.
Malkiel, B.G. (2014) Is Smart Beta Really Smart? Journal of Portfolio Management, 40(5) 127-134.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Mohammdi, Sh., Tondnevis, F. & Mahmoudi, E. (2020). Application of Copula Based Correlations and Mutual Information in Time Series Clustering and Enhanced Indexing by Adopting the Robust Optimization Approach. Financial Research Journal 23(4) 479-523.
Mohammdi, Sh., Tondnevis, F. & Mehmoudi, E. (2023). Application of Copula-based Correlation Coefficients and Dynamic Programming-based Approaches to determining Similarity between Time Series for Clustering and Index Tracking, Tehran Exchange journal, 60(15) 47-72. (in Persian)
Seyfi, A., Hanafizadeh, P. & Navayi, H. (2004). Robust Model for Single Period portfolio optimization. Financial Research Journal, 17, 71-95 (in Persian)
Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1).
Stigler, S.M. (1975). The transition from point to distribution estimation. Bull. Int. Stat. Inst. 46, 332–340.
Wang, W., Li, W., Zhang, N. & Liu, K. (2020). Portfolio formation with preselection using deep learning from long-term financial data. Expert Systems with Applications, 143, 113042.
Zhao, C., Yang, S., Qin, C., Zhou, J. & Chen, L. (2023). A novel smart beta optimization based on probabilistic forecast. Computers, Materials & Continua, 75(1), 478–491.