تجزیه‌‌و‌تحلیل پویایی بازار کارمزد در چرخۀ عمر شبکۀ بیت‌‌کوین

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه حسابداری، دانشگاه اصفهان، اصفهان، ایران.

2 دانشجوی دکتری، گروه حسابداری، دانشکدۀ حسابداری و علوم مالی، دانشکدگان مدیریت، دانشگاه تهران، تهران، ایران.

10.22059/frj.2025.375585.1007592

چکیده

هدف: بیت‌کوین از زمان آغاز به کار خود در سال ۲۰۰۹، از نظر پذیرش عمومی به‌عنوان قدیمی‌ترین ارز دیجیتال، رشد فوق العاده‌ای را تجربه کرده است؛ با این حال، تحول آن از یک ارز دیجیتال آزمایشی، به یک شبکه پرداخت مالی اصلی، چالش‌های جدیدی را در رابطه با مقیاس‌پذیری و ظرفیت ایجاد کرد. این مطالعه به‌دنبال بررسی چگونگی پاسخ کارمزد تراکنش بیت‌کوین به عوامل مالی و فنی درون شبکه در دوره‌های مختلف عمر آن است. این پژوهش دیدگاه نوینی دربارۀ پویایی یک ارز و بلوغ شبکۀ پرداخت غیرمتمرکز ارائه می‌دهد.
روش: داده‌های شبکۀ بلاکچین بیت‌کوین از سال ۲۰۰۹ تا ۲۰۲۳ جمع‌آوری و در سه دوره، شامل دورۀ پذیرش اولیه (۲۰۰۹ تا ۲۰۱۴)، دورۀ سوداگرانه (۲۰۱۴ تا ۲۰۱۸) و دورۀ چالش مقیاسپذیری (۲۰۱۸ تا ۲۰۲۳) تفکیک و تحلیل شده است. مدل‌سازی ARDL برای تحلیل روابط کوتاه‌مدت و بلندمدت استفاده شده است. متغیر وابسته کارمزد تراکنش و متغیرهای توضیحی، شامل قیمت بیت‌کوین، متوسط ارزش تراکنش‌ها به بیت‌کوین، اندازۀ بلاک، سختی شبکه و حجم تراکنش است.
یافته‌ها: نتایج نشان می‌دهد که در دورۀ پذیرش اولیه که قیمت و کارمزد روز قبل در دورۀ کوتاه‌مدت بر کارمزد تراکنش مؤثر است، قیمت نیز در بلندمدت بر کارمزد تراکنش تأثیر می‌گذارد. در دورۀ سوداگرانه، حجم تراکنش ارسالی، اندازۀ بلاک و کارمزد روز قبل در کوتاه‌مدت و در بلندمدت سختی شبکه، بر کارمزد تراکنش اثرگذاری معناداری دارد. در دورۀ چالش مقیاس‌پذیری، در کوتاه‌مدت کارمزد تراکنش روز قبل، قیمت بیت‌کوین، متوسط ارزش تراکنش‌ها به بیت‌کوین، اندازۀ بلاک، سختی شبکه و حجم تراکنش و در بلندمدت سختی شبکه و سایز بلاک بر کارمزد اثر معناداری دارد. همچنین در دورۀ چالش مقیاس‌پذیری، کارمزد روز قبل اثرگذاری بالایی بر کارمزد روز جاری دارد؛ به‌طوری که نوعی چسبندگی را ایجاد کرده است که تا پایان دوره ادامه می‌یابد. به‌طور کلی، کارمزدها در طول دوره‌ها از طریق یادگیری عوامل مؤثر بر آن تثبیت می‌شوند؛ زیرا رفتار کاربران و استخراج‌کنندگان پیرامون محدودیت‎های بلاک و انگیزههای پاداش استخراج، بهینه شده‌اند. در طول دورۀ پذیرش اولیه، کارمزد تراکنش‌ها به‌دلیل نوپا بودن بیت‌کوین و استفاده محدود، نوسان‌های بالایی داشت. همان طور که ارزهای دیجیتال به‌طور فزاینده به‌عنوان سازوکار پرداخت در دورۀ سوداگرانه مورد استفاده قرار گرفت، پارامترهای فنی اثرگذار بر اندازۀ بلاک و ظرفیت پردازش باعث شد که کارمزدها بیشتر منعکس‌کننده تقاضای در شبکه باشند. ظهور محدودیت‌های مقیاس‌پذیری که بلاکچین در دوره چالش مقیاس‌پذیری با آن مواجه است، باعث شد که پویایی کارمزدها به معیارهای بیشتری مرتبط شود که به‌عنوان نماینده‌هایی برای سطح فعالیت و استفاده از شبکه عمل می‌کنند.
نتیجه‌گیری: همان طور که بیت‌کوین در مفهوم جدید به شبکه پرداخت تبدیل شد، کارمزدها به‌جای نوسان تصادفی در دوره پذیرش اولیه، با تقاضا و انگیزه‌های مشارکت‌کنندگان شبکه در دورۀ چالش مقیاس‌پذیری هم‌سو شده است. تفکیک داده‌های شبکه بیت‌کوین به سه دوره زمانی، دیدگاه نوینی از چگونگی کارکرد شبکه‌های غیرمتمرکز و عوامل مؤثر بر بازار کارمزد در دوره‌های مختلف بلوغ شبکه را فراهم می‌کند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing Fee Market Dynamics over the Bitcoin Lifecycle

نویسندگان [English]

  • Amin Rostami 1
  • Mahdi Safaei 2
1 Assistant Prof., Department of Accounting, University of Isfahan, Isfahan, Iran.
2 PhD Candidate, Department of Accounting, Faculty of Accounting and Financial Sciences, College of Management, University of Tehran, Tehran, Iran.
چکیده [English]

Objective
Since its inception in 2009, Bitcoin has experienced tremendous growth in terms of public acceptance as the oldest cryptocurrency. However, transitioning from an experimental digital currency to a mainstream payment network introduced new challenges related to scalability and capacity. This study investigates how bitcoin transaction fees respond to financial and technical factors within the network over different periods of its lifespan. The investigation provides novel insights into the dynamics of a decentralized currency and the maturity of a payment network.
 
Methods
Bitcoin blockchain data from 2009 to 2023 was categorized into three distinct periods for analysis: the Initial Period (2009-2014), Speculation Period (2014-2018), and Scalability Challenge Period (2018-2023). Autoregressive Distributed Lag (ARDL) modeling was used to analyze short-term and long-term relationships. The dependent variable was the transaction fee, and the explanatory variables included the bitcoin price, average transaction value, average block size, network difficulty, and transaction volume.
 
Results
The results showed that during the Initial Period, in the short term, the price and the previous day’s fee had a significant effect on the transaction fee, and in the long term, the price also affected the transaction fee. During the Speculation Period, the transaction volume, block size, and the previous day’s fee in the short term, as well as network difficulty in the long term, had a significant effect on the transaction fee. During the Scalability Challenge Period, in the short term, the previous day’s transaction fee, Bitcoin price, the average value of transactions in Bitcoin, block size, network difficulty, and transaction volume had significant effects on the transaction fee, while in the long term, network difficulty and block size remained significant. Moreover, during the Scalability Challenge Period, the previous day’s fee had a strong effect on the current day’s fee, creating a kind of stickiness that persisted until the end of the period. Overall, fees were stabilized over time as users and miners learned the factors influencing them, optimizing their behavior around block limits and mining reward incentives. During the Initial Period, transaction fees were highly volatile due to Bitcoin’s nascency and limited usage. As cryptocurrencies increasingly became utilized as a payment mechanism in the Speculation Period, the technical parameters affecting block sizes and processing capacity caused fees to be more reflective of demand on the network. The emergence of scalability constraints facing the blockchain in the Scalability Challenge Period has led to linking the dynamics of fees to more metrics that act as proxies for the level of activity and network usage.
 
Conclusion
As bitcoin has become a payment network in the new concept, the fees have been aligned with the demand and motivations of network participants during the scaling challenge period, instead of randomly fluctuating during the Initial Period. The separation of bitcoin network data into three time periods provides a new perspective on how decentralized networks work and the factors affecting the fee market in different periods of network maturity.

کلیدواژه‌ها [English]

  • Behavioral finance
  • Bitcoin
  • Blockchain
  • Fee market
  • International finance
  • Transaction fee
Banerjee, A., Galbraith, J. W. & Dolado, J. (1990). Dynamic Specification and Linear Transformations of the Autoregressive-Distributed Lag Model. Oxford Bulletin of Economics & Statistics, 52(1).
Basu, S., Easley, D., O’Hara, M. & Sirer, E. G. (2023). Stablefees: A predictable fee market for cryptocurrencies. Management Science, 69(11), 6508-6524.
Bhaskar, N. D. & Chuen, D. L. K. (2015). Bitcoin mining technology. In Handbook of digital currency (pp. 45-65). Academic Press.
Bouznit, M. & Pablo-Romero, M. D. P. (2016). CO2 emission and economic growth in Algeria. Energy policy, 96, 93-104.
Bowden, R., Keeler, H. P., Krzesinski, A. E. & Taylor, P. G. (2018). Block arrivals in the bitcoin blockchain. arXiv preprint arXiv:07447/1801.
Cusumano, M. A. (2014). The bitcoin ecosystem. Communications of the ACM, 57(10), 22-24.
Easley, D., O'Hara, M. & Basu, S. (2019). From mining to markets: The evolution of bitcoin transaction fees. Journal of Financial Economics, 134(1), 91-109.
Ebert, U. & Welsch, H. (2004). Meaningful environmental indices: a social choice approach. Journal of Environmental Economics and Management, 47(2), 270-283.
Edgerton, D. & Shukur, G. (1999). Testing autocorrelation in a system perspective testing autocorrelation. Econometric Reviews, 18(4), 343-386.
Engle, R. F. & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.
Franco, P. (2014). Understanding Bitcoin: Cryptography, engineering and economics. John Wiley & Sons.
Freudenberg, M. (2003). Composite indicators of country performance: a critical assessment.
Gal, M. S. & Rubinfeld, D. L. (2019). Data standardization. NYUL Rev., 94, 737.
Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H. & Capkun, S. (2016, October). On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 3-16).
Ghimire, S. & Selvaraj, H. (2018, December). A survey on bitcoin cryptocurrency and its mining. In 2018 26th International Conference on Systems Engineering (ICSEng) (pp. 1-6). IEEE.
Göbel, J. & Krzesinski, A. E. (2017, November). Increased block size and Bitcoin blockchain dynamics. In 2017 27th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 1-6). IEEE.
Grinberg, R. (2012). Bitcoin: An innovative alternative digital currency. Hastings Sci. & Tech. LJ, 4, 159.
Gujarati, D. N. (2002). Basic Econometrics, (4th ed).
Hayes, A. S. (2017). Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. Telematics and informatics, 34(7), 1308-1321.
Houy, N. (2014). The economics of Bitcoin transaction fees. GATE WP, 1407.
Jacobs, R., Smith, P. & Goddard, M. (2004). Measuring performance: an examination of composite performance indicators.
Jiang, S. & Wu, J. (2019, July). Bitcoin mining with transaction fees: a game on the block size. In 2019 IEEE International Conference on Blockchain (Blockchain) (pp. 107-115). IEEE.
Joint Research Centre-European Commission. (2008). Handbook on constructing composite indicators: methodology and user guide. OECD publishing.
Kasahara, S. & Kawahara, J. (2016). Effect of Bitcoin fee on transaction-confirmation process. arXiv preprint arXiv:00103/1604.
Kaufman, R. L. (2013). Heteroskedasticity in regression: Detection and correction. Sage Publications.
Kaushal, P. K., Bagga, A. & Sobti, R. (2017, July). Evolution of bitcoin and security risk in bitcoin wallets. In 2017 International Conference on Computer, Communications and Electronics (Comptelix) (pp. 172-177). IEEE.
Kim, T. (2017). On the transaction cost of Bitcoin. Finance Research Letters, 23, 300-305.
Kraft, D. (2016). Difficulty control for blockchain-based consensus systems. Peer-to-peer Networking and Applications, 9, 397-413.
Kroll, J. A., Davey, I. C. & Felten, E. W. (2013, June). The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In Proceedings of WEIS (Vol. 2013, No. 11).
Kumari, B. & Swarnkar, T. (2020). Importance of data standardization methods on stock indices prediction accuracy. In Advanced Computing and Intelligent Engineering: Proceedings of ICACIE 2018, Volume 1 (pp. 309-318). Springer Singapore.
Lavi, R., Sattath, O. & Zohar, A. (2022). Redesigning Bitcoin’s fee market. ACM Transactions on Economics and Computation, 10(1), 1-31.
Li, J., Yuan, Y. & Wang, F. Y. (2022). Analyzing Bitcoin transaction fees using a queueing game model. Electronic commerce research, 1-21.
Li, J., Yuan, Y., Wang, S. & Wang, F. Y. (2018, June). Transaction queuing game in bitcoin blockchain. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 114-119). IEEE.
Mihăilescu, R. (2018). Blockchain Technologies: A new approach to old challenges. Revista tinerilor economişti, (31), 7-21.
Möser, M. & Böhme, R. (2015). Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees. In Financial Cryptography and Data Security: FC 2015 International Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30, 2015, Revised Selected Papers (pp. 19-33). Springer Berlin Heidelberg.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized business review.
Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, H. & Giovannini, E. (2005). Handbook on constructing composite indicators: methodology and user guide. Organisation for Economic Cooperation and Development (OECD). Statistics Working Paper JT00188147, OECD, France, 164.
Nayak, S. C., Misra, B. B. & Behera, H. S. (2014). Impact of data normalization on stock index forecasting. International Journal of Computer Information Systems and Industrial Management Applications, 6(2014), 257-269.
Nguyen, G. T. & Kim, K. (2018). A survey about consensus algorithms used in blockchain. Journal of Information processing systems, 14(1).
O'Dwyer, K. J. & Malone, D. (2014). Bitcoin mining and its energy footprint.
Okupski, K. (2014). Bitcoin developer reference. Eindhoven, 3-4.
Østbye, P. (2018). The Case for a 21 Million Bitcoin Conspiracy. Available at SSRN 3136044.
Pesaran, M. H. & Shin, Y. (1995). An autoregressive distributed lag modelling approach to cointegration analysis (Vol. 9514). Cambridge, UK: Department of Applied Economics, University of Cambridge.
Pesaran, M. H., Shin, Y. & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326.
Reinsel, G. C. (1993). Multivariate time series analysis. New York, NY: John Wiley & Sons.
Rizun, P. R. (2015). A transaction fee market exists without a block size limit. Block Size Limit Debate Working Paper, 2327-4697.
Saad, M., Njilla, L., Kamhoua, C., Kim, J., Nyang, D. & Mohaisen, A. (2019, May). Mempool optimization for defending against DDoS attacks in PoW-based blockchain systems. In 2019 IEEE international conference on blockchain and cryptocurrency (ICBC) (pp. 285-292). IEEE.
Shanker, M., Hu, M. Y. & Hung, M. S. (1996). Effect of data standardization on neural network training. Omega, 24(4), 385-397.
Tan, B. S. & Low, K. Y. (2017). Bitcoin–its economics for financial reporting. Australian Accounting Review, 27(2), 220-227.
Tsang, K. P. & Yang, Z. (2021). The market for bitcoin transactions. Journal of International Financial Markets, Institutions and Money, 71, 101282.
Vallarano, N., Tessone, C. J. & Squartini, T. (2020). Bitcoin transaction networks: an overview of recent results. Frontiers in Physics, 8, 286.
Van Alstyne, M. (2014). Why Bitcoin has value. Communications of the ACM, 57(5), 30-32.
Velde, F. (2013). Bitcoin: A primer.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: journal of the Econometric Society, 817-838.