کاهش هزینۀ کشف تقلب در تراکنش‌های کارت‌های اعتباری: با رویکرد هم‌جوشی اطلاعات

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت صنعتی و فناوری، دانشکدگان تهران، دانشگاه تهران، تهران، ایران.

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت صنعتی و فناوری، دانشکدگان تهران، دانشگاه تهران، تهران، ایران.

3 کارشناس ارشد، گروه مدیریت صنعتی، دانشکده مدیریت صنعتی و فناوری، دانشکدگان تهران، دانشگاه تهران، تهران، ایران.

10.22059/frj.2024.338715.1007300

چکیده

هدف: امروزه اکثر شرکت‌ها و سازمان‌ها، تجارت الکترونیک را برای به‌دست‌آوردن بهره‌وری در خدمات و محصولات خود، در زمینه‌هایی مانند کارت اعتباری، مخابرات، بیمۀ درمانی، بیمۀ خودرو و غیره به‌کار گرفته‌اند. از طرفی، با توجه به حجم رو به رشد تراکنش‌های کارت‌های اعتباری و انواع روش‌های کلاه‌برداری و تقلب در این کارت‌ها، تقاضا برای کشف تقلب در این حوزه نیز افزایش یافته است. با توجه به انواع راه‌کارها و الگوریتم‌های ارائه‌شده برای کاهش هزینۀ تقلب در تراکنش‌های کارت‌های اعتباری، هدف از این پژوهش، ارائه روشی ترکیبی و بهینه، برای کاهش هزینۀ تشخیص تقلب در تراکنش‌های کارت‌های اعتباری، با استفاده از هم‌جوشی الگوریتم‌های ناهمگن طبقه‌بندی و خوشه‌بندی در سطح تصمیم‌گیری است.
روش: این پژوهش روی داده‌های یک مجموعه تراکنش‌های بانک برزیلی در بازۀ زمانی دو ماهه، از ۱۴ جولای ۲۰۰۴ تا ۱۲ سپتامبر همان سال انجام شده است. در این مقاله با استفاده از شبکۀ عصبی مصنوعی، به‌عنوان یک رویکرد با سرپرستی و الگوریتم خوشه‌بندی K نزدیک‌ترین همسایه، به‌عنوان یک رویکرد بدون سرپرستی، تابع هزینه را به‌دست آوردیم. همچنین با توجه به شاخص‌های مختلف کشف تقلب که تاکنون در ادبیات معرفی شده، شاخص هزینۀ کشف تقلب انتخاب و بر اساس این تابع هزینه که نخستین‌بار توسط گادی و همکارانش (۲۰۰۸) معرفی شد، به سنجش این شاخص‌ها پرداختیم. از آنجا که استفاده از تنها یک الگوریتم هزینۀ زیادی دارد، به‌منظور کاهش آن، هم‌جوشی الگوریتم‌ها به دو روش نظریۀ گواه دمستر – شفر و هم‌جوشی احتمالی پیشنهاد شده است. هر دو روش هم‌جوشی در سطح تصمیم استفاده شده و ورودی‌های ناهمگن، از دو رویکرد با سرپرستی و بدون سرپرستی با هم ترکیب شده‌اند.
یافته‌ها: با توجه به الگوریتم‌های اجرا شده، استفاده از تنها یک الگوریتم برای به‌دست‌آوردن تابع هزینۀ قابل قبول، می‌تواند بسیار پُرهزینه باشد. در حالی‌که استفاده از رویکرد هم‌جوشی، می‌تواند در کاهش هزینه تأثیر بسزایی داشته باشد. هم‌جوشی احتمالی، در مقایسه با نظریۀ گواه دمسترـ شفر کاهش هزینۀ چشمگیری داشته است که هر دو این الگوریتم‌ها، در سطح تصمیم به‌کار رفته‌اند. هم‌جوشی احتمالی نسبت به شبکۀ عصبی مصنوعی، کاهش هزینه‌ای معادل ۴/۲۱ درصد و نسبت به الگوریتم K نزدیک‌ترین همسایه، کاهش هزینه‌ای معادل ۸/۳۵ درصد داشته است. نتیجۀ این مطالعه، در نهایت با مقاله‌ای که اولین بار این مجموعه داده در آن با الگوریتم سیستم ایمنی مصنوعی به‌کار رفته است، مقایسه شده و کاهش هزینۀ چشمگیری را نشان داده است.
نتیجه‌گیری: در این مطالعه با استفاده از دو الگوریتم طبقه‌بندی و خوشه‌بندی و هم‌جوشی آن‌ها در سطح تصمیم، نشان دادیم که روش‌های ترکیبی در مقایسه با استفادۀ هر یک از الگوریتم‌ها به تنهایی، کاهش هزینۀ بیشتری خواهند داشت. همچنین هم‌جوشی احتمالی در مقایسه با نظریۀ گواه دمستر ـ شفر، هزینۀ کمتری برای کشف تقلب در سیستم‌های مالی دارد که این نتیجه درخور توجهی برای بانک‌ها و مؤسسه‌های مالی است تا یک سیستم کشف تقلب خوب بسازند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reducing Fraud Detection Costs in Credit Card Transactions: An Information Fusion Approach

نویسندگان [English]

  • Mohammad Reza Sadeghi Moghadam 1
  • MohammadReza Mehregan 2
  • Nila Bahrambeig 3
1 Associate Prof., Department of Industrial Management, Faculty of Industrial Management and Technology, College of Management, University of Tehran, Tehran, Iran.
2 Prof., Department of Industrial Management, Faculty of Industrial Management and Technology, College of Management, University of Tehran, Tehran, Iran.
3 MSc., Department of Industrial Management, Faculty of Industrial Management and Technology, College of Management, University of Tehran, Tehran, Iran.
چکیده [English]

Objective
Most companies and organizations use e-commerce to gain productivity and efficiency in their services and products in different areas such as credit cards, telecommunications, health insurance, car insurance, etc. Due to the growing volume of credit card transactions and the various methods of fraud and cheating on these cards, the demand for detecting fraud in this area is also increasing. Considering the various solutions and algorithms presented to reduce the cost of fraud detection in credit card transactions in the literature, the purpose of this research is to present a combined and optimal method to reduce the cost of fraud detection in credit card transactions for financial systems, using the fusion of heterogeneous classification and clustering algorithms at the decision-making level by using two fusion methods: Probabilistic fusion and Dempster-Shafer Evidence theory.
Methods
This study utilizes a transaction dataset from a Brazilian bank, covering two months from July 14 to September 12, 2004. Fraud detection performance is evaluated using a cost function derived from both a supervised learning approach, namely, a neural network, and an unsupervised method, the K-Means clustering algorithm. Drawing on established fraud detection metrics in the literature, the study adopts the cost function introduced by Gadi as the benchmark. Recognizing the high cost associated with using a single algorithm, the study implements two information fusion techniques—Dempster-Shafer evidence theory and probabilistic fusion—to reduce detection costs. Both fusion methods operate at the decision level, integrating heterogeneous outputs from the supervised and unsupervised models.
 
Results
Depending on the algorithms implemented, using only one algorithm to obtain an acceptable cost function can be very costly. While using a fusion approach can have a significant impact on cost reduction. The findings indicate that probabilistic fusion significantly outperforms the Dempster-Shafer evidence theory in minimizing the cost function. Specifically, probabilistic fusion achieves a 21.4% cost reduction compared to the artificial neural network and a 35.8% reduction relative to the K-Means algorithm. The results of this study were finally compared with a paper in which this dataset was first used with the artificial immune system (AIS) algorithm and showed a significant cost reduction.
 
Conclusion
In this study, two classification and clustering algorithms were utilized, and their fusion at the decision level was implemented to demonstrate that combined methods reduce the cost function more effectively than the use of individual algorithms. Furthermore, it was shown that probabilistic fusion yields a lower cost in detecting fraud within financial systems compared to the Dempster-Shafer Evidence theory. This finding is considered significant for banks and financial institutions aiming to develop effective fraud detection systems.

کلیدواژه‌ها [English]

  • Fusion
  • Dempster-shafer evidence theory
  • Fraud detection
  • Credit cards
  • Artificial neural network
آهنگربهان، حمید و منتظر، غلامعلی (1395). طراحی سامانه تشخیص دستبرد ادبی جمله بنیاد در متون فارسی به کمک هم‌جوشی گواه‌ها. پردازش علایم و داده‌ها، 1 (27)، 71-85.
وثوق، ملیحه؛ تقوی‌فرد، محمدتقی و البرزی، محمود (1393). شناسایی تقلب در کارت های بانکی با استفاده از شبکه های عصبی مصنوعی. مدیریت فناوری اطلاعات، 6(4)، 721- 746.
 
References
Abdallah, A., Maarof, M. A. & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113.
Adibi, M. A. & Shahrabi, J. (2015). Online anomaly detection based on support vector clustering. International Journal of Computational Intelligence Systems, 8(4), 735-746.
Ahangarbahan, H. & Montazer, Gh.A. (2016). Design A Sentence Based Plagiarism Detection System by Evidences Fusion in Persian Text. Signal and Data Processing, 1(27), 71-85. (in Persian)
Akila, S. & Reddy, U. S. (2018). Cost-sensitive Risk Induced Bayesian Inference Bagging (RIBIB) for credit card fraud detection. Journal of computational science, 27, 247-254.
Albashrawi, M. (2016). Detecting financial fraud using data mining techniques: A decade review from 2004 to 2015. Journal of Data Science, 14(3), 553-569.
Al-Ani, A. & Deriche, M. (2002). A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. Journal of Artificial Intelligence Research, 17, 333-361.
Aral, K. D., Güvenir, H. A., Sabuncuoğlu, İ. & Akar, A. R. (2012). A prescription fraud detection model. Computer methods and programs in biomedicine, 106(1), 37-46.
Awasthi, A. & Chauhan, S. S. (2011). Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions. Environmental Modelling & Software, 26(6), 787-796.
Awoyemi, J. O., Adetunmbi, A. O. & Oluwadare, S. A. (2017, October). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE.
Bae, H. R., Grandhi, R. V. & Canfield, R. A. (2004). An approximation approach for uncertainty quantification using evidence theory. Reliability Engineering & System Safety, 86(3), 215-225.
Bahnsen, A. C., Aouada, D., Stojanovic, A. & Ottersten, B. (2016). Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134-142.
Bhatia, S., Bajaj, R. & Hazari, S. (2016). Analysis of credit card fraud detection techniques. International Journal of Science and Research, 5(3), 1302-1307.
Boström, H., Andler, S. F., Brohede, M., Johansson, R., Karlsson, A., Van Laere, J., ... & Ziemke, T. (2007). On the definition of information fusion as a field of research.
Brause, R., Langsdorf, T. & Hepp, M. (1999, November). Neural data mining for credit card fraud detection. In Proceedings 11th international conference on tools with artificial intelligence (pp. 103-106). IEEE.
Carneiro, N., Figueira, G. & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91-101.
Chang, R. I., Lai, L. B., Su, W. D., Wang, J. C. & Kouh, J. S. (2007). Intrusion detection by backpropagation neural networks with sample-query and attribute-query. International Journal of Computational Intelligence Research, 3(1), 6-10.
Duman, E. & Ozcelik, M. H. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057-13063.
Fiore, U., De Santis, A., Perla, F., Zanetti, P. & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455.
Gadi, M. F. A., Wang, X. & do Lago, A. P. (2008, December). Comparison with parametric optimization in credit card fraud detection. In 2008 Seventh International Conference on Machine Learning and Applications (pp. 279-285). IEEE.
Ghobadi, F. & Rohani, M. (2016, December). Cost sensitive modeling of credit card fraud using neural network strategy. In 2016 2nd international conference of signal processing and intelligent systems (ICSPIS) (pp. 1-5). IEEE.
Gravina, R., Alinia, P., Ghasemzadeh, H. & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 68-80.
Guan, J. W. & Bell, D. A. (1991). Evidential reasoning and its applications. North-Holand.
Gupta, S., Malsa, N. & Gupta, M. V. (2017). Credit card fraud detection and prevention—a survey. International Journal for Innovative Research in Science & Technology, 4, 1-7.
Hadavandi, E., Shahrabi, J. & Hayashi, Y. (2016). SPMoE: a novel subspace-projected mixture of experts model for multi-target regression problems. Soft Computing, 20, 2047-2065.
Halvaiee, N. S. & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied soft computing, 24, 40-49.
He, W., Williard, N., Osterman, M. & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321.
Hormozi, H., Akbari, M. K., Hormozi, E. & Javan, M. S. (2013, May). Credit cards fraud detection by negative selection algorithm on hadoop (To reduce the training time). In The 5th Conference on Information and Knowledge Technology (pp. 40-43). IEEE.
Jaradat, A., Safieddine, F., Deraman, A., Ali, O., Al-Ahmad, A. & Alzoubi, Y. I. (2022). A probabilistic data fusion modeling approach for extracting true values from uncertain and conflicting attributes. Big Data and Cognitive Computing, 6(4), 114.
Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L. & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert systems with applications, 100, 234-245.
Khatibi, V. & Montazer, G. A. (2010). A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Systems with Applications, 37(12), 8536-8542.
Kotu, V. & Deshpande, B. (2014). Predictive analytics and data mining: concepts and practice with rapidminer. Morgan Kaufmann.
Kumar, K. & Rao, P. (2013). A Valuable Progress on the Way to Credit Card Deception Revelation System. International Journal of Computer and Electronic research.
Lu, X. Y., Chu, X. Q., Chen, M. H. & Chang, P. C. (2015). Data Analytics for Bank Term Deposit by Combining Artificial Immune Network and Collaborative Filtering. In Proceedings of the ASE BigData & SocialInformatics 2015 (pp. 1-6).
MacQueen, J. (1967, January). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics (Vol. 5, pp. 281-298). University of California press.
Maes, S., Tuyls, K., Vanschoenwinkel, B. & Manderick, B. (2002, January). Credit card fraud detection using Bayesian and neural networks. In Proceedings of the 1st international naiso congress on neuro fuzzy technologies (Vol. 261, p. 270).
Malini, N. & Pushpa, M. (2017). Analysis on credit card fraud detection techniques by data mining and big data approach. International journal of research in computer applications and robotics, 5(5), 38-45.
Mansouri, T., Nabavi, A., Zare Ravasan, A. & Ahangarbahan, H. (2016). A practical model for ensemble estimation of QoS and QoE in VoIP services via fuzzy inference systems and fuzzy evidence theory. Telecommunication Systems, 61, 861-873.
Mansouri, T., Ravasan, A. Z. & Gholamian, M. R. (2014). A novel hybrid algorithm based on k-means and evolutionary computations for real time clustering. International Journal of Data Warehousing and Mining (IJDWM), 10(3), 1-14.
Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y. & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
Panigrahi, S., Kundu, A., Sural, S. & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354-363.
Phua, C., Lee, V., Smith, K. & Gayler, R. (2010). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119.
Popescu, D. E., Lonea, M., Zmaranda, D., Vancea, C. & Tiurbe, C. (2010). Some aspects about vagueness & imprecision in computer network fault-tree analysis. International Journal of Computers Communications & Control, 5(4), 558-566.
Sherly, K. K. (2012). A comparative assessment of supervised data mining techniques for fraud prevention. International Journal of Science and Technology, 1(16).
SamanehSorournejad, Z. Z., Atani, R. E. & Monadjemi, A. H. (2016). A survey of credit card fraud detection techniques: Data and technique oriented perspective. arXiv preprint ArXiv:1611.06439 [Cs].
Stolfo, S., Fan, D. W., Lee, W., Prodromidis, A. & Chan, P. (1997, July). Credit card fraud detection using meta-learning: Issues and initial results. In AAAI-97 Workshop on Fraud Detection and Risk Management (Vol. 83).
Tabassian, M., Ghaderi, R. & Ebrahimpour, R. (2012). Combination of multiple diverse classifiers using belief functions for handling data with imperfect labels. Expert systems with applications, 39(2), 1698-1707.
Tripathi, K. K. & Pavaskar, M. A. (2012). Survey on credit card fraud detection methods. International Journal of Emerging Technology and Advanced Engineering, 2(11), 721-726.
Vosough, M., Taghavi Fard, M.T. & Alborzi, M. (2015). Bank Card Fraud Detection Using Artificial Neural Network. Journal of Information Technology Management, 6(4), 721- 746. (in Persian)
Xu, P., Davoine, F., Bordes, J. B., Zhao, H. & Denœux, T. (2016). Multimodal information fusion for urban scene understanding. Machine Vision and Applications, 27, 331-349.
Yen, J. (2002). Generalizing the Dempster-Schafer theory to fuzzy sets. IEEE Transactions on Systems, man, and Cybernetics, 20(3), 559-570.
Zareapoor, M. & Shamsolmoali, P. (2015). Application of credit card fraud detection: Based on bagging ensemble classifier. Procedia computer science, 48(2015), 679-685.
Zareapoor, M., Seeja, K. R. & Alam, M. A. (2012). Analysis on credit card fraud detection techniques: based on certain design criteria. International journal of computer applications, 52(3).