References
Abvali, M., Khaliliaraghi, M., Hasanabadi, H. & Yaghoobnezhad, A. (2019). Optional trading pricing with a new analytic method for the Black Scholes equation. Journal of Financial Management Strategy, 7(3), 135-155. (in Persian)
Amilon, H. (2003). A neural network versus Black–Scholes: a comparison of pricing and hedging performances. Journal of Forecasting, 22(4), 317-335.
Amiri, M. (2020). Option pricing under Black–Scholes, Boness and Binomial tree models- evidence from the gold coin option contracts in Iran mercantile exchange. Quarterly Journal of Securities Exchange, 13(50), 141-170. (in Persian)
Asima, M. & Ali Abbaszadeh Asl, A. (2019). Developing a Hybrid Model to Estimate Expected Return Based on Genetic Algorithm, 21(1), 101-120. (in Persian)
Azar, A. & Karimi, S. (2010). Neural Network Forecasts of Stock Return Using Accounting Ratios. Financial Research Journal, 11(28), 3-20. (in Persian)
Black, F. & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
Fadda, S. (2020). Pricing options with dual volatility input to modular neural networks. Borsa Istanbul Review, 20(3), 269-278.
Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc.
Ghandehari, M. (2011). Option price Prediction using Fuzzy Neural Systems. University of Economic Sciences, Iran. (in Persian)
Gradojevic, N., Gençay, R. & Kukolj, D. (2009). Option pricing with modular neural networks. IEEE transactions on neural networks, 20(4), 626-637.
Hull, J. C. (2021). Option, Futures, and Other Derivatives (11th ed.). New York: Pearson.
Hutchinson, J. M., Lo, A. W. & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The journal of Finance, 49(3), 851-889.
İltüzer, Z. (2022). Option pricing with neural networks vs. Black-Scholes under different volatility forecasting approaches for BIST 30 index options. Borsa Istanbul Review, 22(4), 725-742.
Jahangiri, I. (2017). Financial Derivatives Pricing using Stochastic Volatility. Sharif University of Technology, Iran. (in Persian)
Kalat, J. W. (2015). Biological psychology. Cengage Learning.
Kashanpour, R. (2012). European Option pricing in Levy Stochastic Turbulence model with Stochastic Interest Rate. Allameh Tabataba’i University, Iran. (in Persian)
Kimiagari, A. M., Hajizadeh, E., Dastkhan, H. & Ramezani, M. (2017). Development a New Hybrid Modeling Approach for European Option. International Journal of Industrial Engineering & Production Management, 28(1), 87-99. (in Persian)
Malek Mohammadi, S. (2019). Comparing the performance of options pricing models in Tehran Stock Exchange. Allameh Tabataba’i University, Iran. (in Persian)
Malliaris, M. & Salchenberger, L. (1993). A neural network model for estimating option prices. Applied Intelligence, 3(3), 193-206.
Mardomkhah, R. (2022). Option pricing using machine learning. Tabriz University, Iran.
(in Persian)
Marsland, S. (2015). Machine learning: an algorithmic perspective. Chapman and Hall/CRC.
Mehrdoust, F. & Saber, N. (2013). The option pricing under double Heston model with jumps. Journal of Advanced Mathematical Modeling, 3(2), 45-60. (in Persian)
Neisy, A. & Peymani Foroushani, M. (2018). Financial modeling using MATLAB software. Tehran: Allameh Tabatabai University. (in Persian)
Neisy, A., Maleki, B. & Rezaeian, R. (2017). The Parameters Estimation of European Option pricing model under Underlying Asset with Stochastic Volatility by Loss Function Method. Journal of Financial Engineering and Securities Management, 7(28), 91-115. (in Persian)
Peymany, M. & Hooshangi, Z. (2017). Estimation and Comparison of ShortTerm Interest Rate Equilibrium Models Using Islamic Treasury Bills. Financial Engineering and Portfolio Management, 8(33), 89-111. (in Persian)
Phil, K. (2017). Matlab deep learning with machine learning, neural networks and artificial intelligence. Apress, New York.
Ramezani, A. (2018). Financial derivatives pricing using particle swarm optimization algorithm (with emphasis on American and European options). Damghan University, Iran. (in Persian)
Raschka, S. & Mirjalili, V. (2019). Machine Learning and Deep Learning with Python, scikit-learn and TensorFlow. UK: Packt Publishing.
Saadaei Jahormi, S. (2022). Option pricing using machine learning. Allameh Tabataba’i University, Iran. (in Persian)
Samii Machiani, R. (2017). Option pricing under Heston-CIR model with Double Exponential Jump. Gilan University. Iran. (in Persian)
Schmidt, A. L. B. R. E. C. H. T. & Bandar, Z. U. H. A. I. R. (1998, March). Modularity-a concept for new neural network architectures. In Proc. IASTED International Conf. Computer Systems and Applications (pp. 26-29).
Shukla, A., Tiwari, R. & Kala, R. (2010). Towards hybrid and adaptive computing: A perspective (Vol. 307). Springer Science & Business Media.
Tatsat, H., Puri, S. & Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O'Reilly Media.
Theobald, O. (2017). Machine learning for absolute beginners: a plain English introduction (Vol. 157). Scatterplot press.
Turing, A. M. (2012). Computing machinery and intelligence (1950). The Essential Turing: the Ideas That Gave Birth to the Computer Age, 433-464.
Wang, C. P., Lin, S. H., Huang, H. H. & Wu, P. C. (2012). Using neural network for forecasting TXO price under different volatility models. Expert Systems with Applications, 39(5), 5025-5032.
Wu, H. F. (2019). From constant to stochastic volatility: Black-Scholes versus Heston option pricing models.
Ziyadi, H., Salavati, E. & Lotfi Heravi, M.M. (2023). Housing Price Forecasting Using AI (LSTM), Financial Research Journal, 25(4), 557-576. doi: 10.22059/frj.2023.349924.1007398 (in Persian)