Baitinger, E., & Papenbrock, J. (2016). Interconnectedness risk and active portfolio management.
Journal of Investment Strategies, Forthcoming. Available at SSRN:
https://ssrn.com/abstract=2909839
Bechis, L., Cerri, F., & Vulpiani, M. (n.d.). (2020). Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio Theory.
Brinson, G. P., Hood, L. R., & Beebower, G. L. (1986). Determinants of portfolio performance. Financial Analysts Journal, 42(4), 39–44.
Burggraf, T. (2020). Beyond Risk Parity–A Machine Learning-based Hierarchical Risk Parity Approach on Cryptocurrencies. Finance Research Letters, 101523.
Cochrane, J. H. (1999). Portfolio advice for a multifactor world. National Bureau of Economic Research.
De Prado, M. L. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42(4), 59–69.
Dose, C., & Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A: Statistical Mechanics and Its Applications, 355(1), 145–151.
Hüttner, A., Mai, J.-F., & Mineo, S. (2018). Portfolio selection based on graphs: Does it align with Markowitz-optimal portfolios? Dependence Modeling, 6(1), 63–87.
Jain, P., & Jain, S. (2019). Can machine learning-based portfolios outperform traditional risk-based portfolios? the need to account for covariance misspecification. Risks, 7(3), 74.
León, D., Aragón, A., Sandoval, J., Hernández, G. J., Arévalo, A., & Niño, J. (2017). Clustering algorithms for Risk-Adjusted Portfolio Construction. ICCS, 1334–1343.
Lohre, H., Rother, C., & Schäfer, K. A. (2020). Hierarchical risk parity: Accounting for tail dependencies in multi-asset multi-factor allocations. Machine Learning and Asset Management, Forthcoming.
Simon, H. A. (1991). The Architecture of Complexity. In Facets of Systems Science, 457–76. Springer.
Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., & Kanto, A. (2003). Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68(5), 56110.
Peralta, G., & Zareei, A. (2016). A network approach to portfolio selection. Journal of Empirical Finance, 38, 157–180.
Raffinot, T. (2017). Hierarchical clustering-based asset allocation. The Journal of Portfolio Management, 44(2), 89–99.
Raffinot, T. (2018). The hierarchical equal risk contribution portfolio. Available at SSRN 3237540.
Ren, F., Lu, Y.N., Li, S.P., Jiang, X.F., Zhong, L.X., & Qiu, T. (2017). Dynamic portfolio strategy using clustering approach. PloS One, 12(1), e0169299.
Karimi, A. (2021). Stock portfolio optimization using multi-objective genetic algorithm (NSGA II) and maximum Sharp ratio. FEJ, 12(46), 389–410. (in Persian)
Nabizade, A., Gharehbaghi, H., & Behzadi, A. (2017). Index Tracking Optimization under down Side Beta and Evolutionary Based Algorithms. Financial Research Journal, 19(2), 319–340. https://doi.org/10.22059/jfr.2017.226501.1006374. (in Persian)
Noorahmadi, M., Sadeghi, H., (2019), a review of missing value management methods in time series. 6th Mathematics and Humanities Seminar (Financial Mathematics). https://femath6.atu.ac.ir/paper?manu=107697 (in Persian)
Taghizadeh Yazdi, M. R., Fallahpour, S., & Ahmadi Moghaddam, M. (2017). Portfolio selection by means of Meta-goal programming and extended lexicograph goal programming approaches. Financial Research Journal, 18(4), 591–612. https://doi.org/10.22059/jfr.2017.62580. (in Persian)