Adomavicius, G. & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.
Avramov, D., Kaplanski, G. & Levy, H. (2018). Talking Numbers: Technical versus fundamental investment recommendations. Journal of Banking & Finance, 92, 100–114.
Bag, V. & Kulkarni, U. V. (2017). Stock Price Trend Prediction and Recommendation using Cognitive Process. International Journal of Rough Sets and Data Analysis (IJRSDA), 4(2), 36–48.
Baldauf, B. & Santoni, G. J. (1991). Stock price volatility: some evidence from an ARCH model. The Journal of Futures Markets (1986-1998), 11(2), 191.
Barber, B. M. & Odean, T. (2013). The behavior of individual investors. In Handbook of the Economics of Finance (Vol. 2, pp. 1533–1570). Elsevier.
Breese, J. S., Heckerman, D. & Kadie, C. (2013). Empirical analysis of predictive algorithms for collaborative filtering. ArXiv Preprint ArXiv:1301.7363.
Chavarnakul, T. & Enke, D. (2008). Intelligent technical analysis based equivoque charting for stock trading using neural networks. Expert Systems with Applications, 34(2), 1004–1017.
Chong, T. T.L. & Ng, W.K. (2008). Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30. Applied Economics Letters, 15(14), 1111–1114.
Davallou, M. & Tabarsa, B. (2020). The Style Momentum and Its Origin. Financial Research Journal, 22(3), 320–342. https://doi.org/10.22059/frj.2020.288887.1006924. (in Persian)
De Campos, L. M., Fernández-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010). Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. International journal of approximate reasoning, 51(7), 785-799.
de Oliveira, F. A., Nobre, C. N. & Zarate, L. E. (2013). Applying Artificial Neural Networks to prediction of stock price and improvement of the directional prediction index–Case study of PETR4, Petrobras, Brazil. Expert Systems with Applications, 40(18), 7596–7606.
De Rossi, G., Kolodziej, J., & Brar, G. (2020). A recommender system for active stock selection. Computational Management Science, 17(4), 517-547.
Dickson, G. K. (2015). Assessing the Performance of Active and Passive Trading On the Ghana Stock Exchange. University of Ghana.
Dowd, K. (2007). Measuring market risk. John Wiley & Sons.
Du, Y. & Li, S. (2004). Industrial value chain: the innovative format of value strategy [J]. Studies in Science of Science, 5.
Ewing, B. T. (2002). The transmission of shocks among S&P indexes. Applied Financial Economics, 12(4), 285–290.
Fama, E. F. (1995). Random walks in stock market prices. Financial Analysts Journal, 51(1), 75–80.
Fernandez Rodriguez, F., Sosvilla-Rivero, S. & Andrada Félix, J. (1999). Technical analysis in the Madrid stock exchange.
Guo, H. & Savickas, R. (2006). Idiosyncratic volatility, stock market volatility, and expected stock returns. Journal of Business & Economic Statistics, 24(1), 43–56.
Hsu, Y.T., Liu, M.C., Yeh, J. & Hung, H.-F. (2009). Forecasting the turning time of stock market based on Markov–Fourier grey model. Expert Systems with Applications, 36(4), 8597–8603.
Jondeau, E. & Rockinger, M. (2006). The copula-garch model of conditional dependencies: An international stock market application. Journal of International Money and Finance, 25(5), 827–853.
Karolyi, G. A. (1995). A multivariate GARCH model of international transmissions of stock returns and volatility: The case of the United States and Canada. Journal of Business & Economic Statistics, 13(1), 11–25.
Kimoto, T., Asakawa, K., Yoda, M. & Takeoka, M. (1990). Stock market prediction system with modular neural networks. 1990 IJCNN International Joint Conference on Neural Networks, 1–6.
Koutmos, G. & Booth, G. G. (1995). Asymmetric volatility transmission in international stock markets. Journal of International Money and Finance, 14(6), 747–762.
Li, G.-D., Yamaguchi, D. & Nagai, M. (2008). The development of stock exchange simulation prediction modeling by a hybrid grey dynamic model. The International Journal of Advanced Manufacturing Technology, 36(1–2), 195–204.
Musto, C., Semeraro, G., Lops, P., De Gemmis, M. & Lekkas, G. (2015). Personalized finance advisory through case-based recommender systems and diversification strategies. Decision Support Systems, 77, 100–111.
Nti, I. K., Adekoya, A. F., Weyori, B. A., Ballings, M., Van den Poel, D., Hespeels, N. & Gryp, R. (2015). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 42(20), 1–51.
Nourahmadi, M. & Sadeqi, H. (2022). Typology of personalization in recommender systems. Innovation Management and Operational Strategies, 3(1), 12–31. https://doi.org/10.22105/imos.2021.290478.1117. (in Persian)
Nourahmadi, M. & Sadeqi, H. (2022). A Machine Learning-Based Hierarchical Risk Parity Approach: A Case Study of Portfolio Consisting of Stocks of the Top 30 Companies on the Tehran Stock Exchange Financial Research Journal, 25(2), 236-256. (in Persian)
Papagelis, M., Plexousakis, D. & Kutsuras, T. (2005). Alleviating the sparsity problem of collaborative filtering using trust inferences. International Conference on Trust Management, 224–239.
Paranjape-Voditel, P. & Deshpande, U. (2013). A stock market portfolio recommender system based on association rule mining. Applied Soft Computing, 13(2), 1055–1063.
Patel, B., Desai, P. & Panchal, U. (2017). Methods of recommender system: a review. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1–4.
Patel, H. R. (2019). Analytical Study for Hybrid Method based Stock Recommendation. Journal of the Gujarat Research Society, 21(6), 227–234.
Ricci, F., Rokach, L. & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1–35). Springer.
Saranj, A. & Nourahmadii, M. (2016). Estimating of value at risk and expected shortfall by using conditional extreme value approach in Tehran Securities Exchange. Financial Research Journal, 18(3), 437–460. https://doi.org/10.22059/jfr.2016.62450. (in Persian)
Schmitz, H. & Humphrey, J. (2000). Governance and Upgrading: Linking Industrial Cluster and Global Value Chain Research. (Vol. 120, pp. 139-170). Brighton: Institute of Development Studies.
Shiller, R. (1989). Market Volatility MIT Press. Cambridge Mass.
Song, F. M. (1994). A two-factor ARCH model for deposit-institution stock returns. Journal of Money, Credit and Banking, 26(2), 323–340.
Su, C.-H. & Cheng, C.-H. (2016). A hybrid fuzzy time series model based on ANFIS and integrated nonlinear feature selection method for forecasting stock. Neurocomputing, 205, 264–273.
Sureshkumar, K. K. & Elango, N. M. (2011). An efficient approach to forecast Indian stock market price and their performance analysis. International Journal of Computer Applications, 34(5), 44–49.
Van Horne, J. C. & Parker, G. G. C. (1967). The random-walk theory: an empirical test. Financial Analysts Journal, 23(6), 87–92.
Validi, J., Najafi, A. A. & Validi, A. (2020). Online Portfolio Selection Based on Follow-the-Loser Algorithms. Financial Research Journal, 22(3), 320–342. https://doi.org/10.22059/frj.2020.288887.1006924. (in Persian)
Vismayaa, V., Pooja, K. R., Alekhya, A., Malavika, C. N., Nair, B. B. & Kumar, P. N. (2019). Classifier Based Stock Trading Recommender Systems for Indian stocks: An Empirical Evaluation. Computational Economics, 1–23.
Wei, L.Y., Chen, T.L. & Ho, T.H. (2011). A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market. Expert Systems with Applications, 38(11), 13625–13631.
White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns. ICNN, 2, 451–458.
Xue, J., Zhu, E., Liu, Q. & Yin, J. (2018). Group recommendation based on financial social network for robo-advisor. IEEE Access, 6, 54527–54535.
Yin, L. & Deng, Y. (2018). Measuring transferring similarity via local information. Physica A: Statistical Mechanics and Its Applications, 498, 102–115.
Yin, L., Zheng, H., Bian, T. & Deng, Y. (2017). An evidential link prediction method and link predictability based on Shannon entropy. Physica A: Statistical Mechanics and Its Applications, 482, 699–712.
Zheng, Z., Gao, Y., Yin, L. & Rabarison, M. K. (2019). Modeling and analysis of a stock-based collaborative filtering algorithm for the Chinese stock market. Expert Systems with Applications, 113006.
Zibriczky12, D. (2016). Recommender systems meet finance: a literature review. In Proc. 2nd Int. Workshop Personalization Recommender Syst (pp. 1-10).