Adcokh, R. & Gradojevic, N. (2019). Non-fundamental, non-parametric Bitcoin forecasting. Physica A: Statistical Mechanics and its Applications, 531, 121-127.
Afsharirad, E., Alavi, E & Sinaei, H (2018). Developing an Intelling Model to Predict Stock Trend Using the Technical Analysis. Financial Research Journal, 20(2), 249-264.
(in Persian)
Almudhaf, F. (2018). Pricing efficiency of Bitcoin trusts. Applied Economics Letters, 25(7), 504-508.
Al-Yahyaee, Kh., Mensi, W. & Yoon, S.M. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets.
Finance Research Letters, 228-234. DOI:
10.1016/j.frl.2018.03.017
Atsalakis, G.S., Atsalaki, I.G., Pasiouras, F. & Zopounidis, C. (2019). Bitcoin price forecasting with neuro-fuzzy techniques.
European Journal of Operational Research, 276(2), 770-780.
https://doi.org/10.1016/j.ejor.2019.01.040
Azadi, Zh. & Saleh Olia, M. (2021). Development of Topsis model for dynamic ranking with time window approach. Industrial Management Journal, 37(1), 27-35. (in Persian)
Corbet, S., Eraslan, V., Lucey, B. & Sensoy, A. (2019). The effectiveness of technical trading rules in cryptocurrency markets. Finance Research Letters, 31, 32-37.
Day, M., Huang, P., Cheng, Y., Lin, Y. & Ni, Y. (2022). Profitable day trading Bitcoin futures following continuous bullish (bearish) candlesticks. Applied Economics Letters, 29 (10), 947-954.
Detzel, A., Liu, H., Strauss, J., Zhou, G. & Zhu, Y. (2021). Learning and Predictability via Technical Analysis: Evidence from Bitcoin and Stocks with Hard-to-Value Fundamentals. Financial management, 50, 107-137.
Gerritsen, D. F., Bouri, E., Ramezanifar, E. & Roubaud, D. (2020). The profitability of technical trading rules in the Bitcoin market. Finance Research Letters, 34, 101-263.
Gradojevic, N., Kukolj, D., Adcock, R. & Djakovic, D. (2023). Forecasting Bitcoin with technical analysis: A not-so-random forest. International Journal of Forecasting, 39 (1), 1-17.
Grobys, K. & Sapkota N. (2019). Cryptocurrencies and momentum. Economics Letters, 180, 6-10.
Heidari, M. & Saleh Olia, M. (2022). Inspecting the Predictive Power of Artificial Intelligence Model in Predicting the Stock Price Trend in Tehran Stock Exchange. Financial Research Journal, 24(4), 602-623. (in Persian)
Huang, J., Huang, W. & Ni, J. (2019). Predicting bitcoin returns using high-dimensional technical indicators. The Journal of Finance and Data Science, 5(3), 140-155.
Jackson, O. (2018). UK eyes AML rules for bitcoin regulation. International Financial Law Review, London (Jan 4, 2018).
Kani, A. (2005). Advanced technical analysis. Strategic employment research and training center. (in Persian)
Kim, S. W. (2021). Technical Trading Rules for Bitcoin Futures. Journal of Convergence for Information Technology, 11(5), 94-103.
Kristoufek, L. (2018). On Bitcoin markets (in) efficiency and its evolution. Physica A: Statistical Mechanics and its Applications, 503, 257-262.
Kristoufek, L. & Vosvrda, M. (2013). Measuring capital market efficiency: Global and local correlations structure, Physica A: Statistical Mechanics and its Applications, 392 (1), 184-193.
Lee, K., Ulkuatam, S., Beling, P. & Scherer, W. (2018). Generating synthetic Bitcoin transactions and predicting market price movement via inverse reinforcement learning and agent-based modelling. Journal of Artificial Societies and Social Simulation, 21(3), 5.
Miller, N., Yang, Y., Sun, B. & Zhang, G. (2019). Identification of technical analysis patterns with smoothing splines for bitcoin prices. Journal of Applied Statistics, 46 (12), 2289-2297.
Mohebi, S., Fadaeinejad, M., Osoolian, M. & Hamidzadeh, M. (2022). Feature Selection for the Prediction Model of the Tehran Stock Exchange Index by Dimensionality Reduction Techniques. Financial Research Journal, 24(4), 577-601. (in Persian)
Moradi, B., Bahri Sales, J., Jabbarzadeh Kangarlooi, S. & Ashtab, A. (2022). Explaining and Proposing a Market Liquidity Prediction Model in Tehran Stock Exchange. Financial Research Journal, 24(1), 134-156. (in Persian)
Ortu, M., Uras, N., Conversano, C. Bartolucci, S. & Destefanis, G. (2022). On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Systems with Applications, 198, 116804.
Resta, M., Pagnottoni, P. & De Giuli, M. E. (2020). Technical Analysis on the Bitcoin Market: Trading Opportunities or Investors’ Pitfall? Risks, 8(2), 44.
Sadeghi Moghadam, M., Alibakhshi, R. & Kalili, E. (2014). An Assessment of Selected Mutual Funds in Iran Stock Market Using a Combined Method of TOPSIS, VIKOR and Similarity-based Approach. Financial Research Journal, 17(2), 259-282. (in Persian)
Seif, S., Jamshidinavid, B., Ghanbari, M. & Esmaeilpour, M. (2021). Predicting Stock Market Trends of Iran Using Elliott Wave Oscillation and Relative Strength Index. Financial Research Journal, 23(1), 134-157. (in Persian)
Sensoy, A. (2019). The inefficiency of Bitcoin revisited a high-frequency analysis with alternative currencies. Finance Research Letters, 28, 68-73
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.
Zhang, W., Wang, P., Li, X. & Shen, D. (2018). The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average. Physica A: Statistical Mechanics and its Applications, 510, 658-670.