Alles, L. A. & Kling, J. L. (1994). Regularities in the variation of skewness in asset returns. Journal of financial Research, 17(3), 427-438.
Ang, A. & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of financial Economics, 63(3), 443-494.
Arditti, F. D. (1971). Another look at mutual fund performance. Journal of Financial and Quantitative Analysis, 6(3), 909-912.
Aven, T. (2013). On the meaning of a black swan in a risk context. Safety science, 57, 44-51.
Beedles, W. L. (1979). On the asymmetry of market returns. Journal of Financial and Quantitative Analysis, 14(3), 653-660.
Beine, M., Cosma, A., & Vermeulen, R. (2010). The dark side of global integration: Increasing tail dependence. Journal of Banking & Finance, 34(1), 184-192.
Black, F. (1976). Studies of stock price volatility changes, proceedings of the 1976 meetings of the business and economic statistics section. 177-191. American Statistical association, SN.
Bollerslev, T., Tauchen, G. & Zhou, H. (2009). Expected stock returns and variance risk premia. The Review of Financial Studies, 22(11), 4463-4492.
Chirstie, A. (1982). The stochastic behavior of common stock variances. Journal of Financial Economics, 10, 407-432.
Chunhachinda, P., Dandapani, K., Hamid, S. & Prakash, A. J. (1997). Portfolio selection and skewness: Evidence from international stock markets. Journal of Banking & Finance 21(2), 143-167.
De Haan, L. & Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media.
Fallahpour, S. & Ahmadi, E. (2015). Estimating Value at Risk of Portfolio of Oil and Gold by Copula-GARCH Method. Financial Reaserch Journal, 16(2), 309-326. (in Persian)
Fama, E. F. (1965). Portfolio analysis in a stable Paretian market. Management science, 11(3), 404-419.
Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance 48(5), 1779-1801.
Hansen, P. R. & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? Journal of applied econometrics, 20(7), 873-889.
Harvey, C. R. & Siddique, A. (1999). Autoregressive conditional skewness. Journal of financial and quantitative analysis, 34(4), 465-487.
Hu, W. & Kercheval, A. (2007). Risk management with generalized hyperbolic distributions. Proceedings of the Fourth IASTED International Conference on Financial Engineering and Applications, ACTA Press.
Birge, J. R. & Chavez-Bedoya, L. (2016). Portfolio optimization under a generalized hyperbolic skewed t distribution and exponential utility. Quantitative Finance,16, 1019-1036.
Jarque, C. M. & Bera, A. K. (1987). A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique, 163-172.
Karmakar, M. (2017). Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach. The Quarterly Review of Economics and Finance, 64, 275-291.
Keshavarz, H. G., & Heyrani, M. (2015). Estimation of Value at Risk in the Presence of Dependence Structure in Financial Returns: A Copula Based Approach. Journal of Economic Reaserch, 49(4), 869-902. (in Persian)
Kraus, A. & Litzenberger, R. H. (1976). Skewness preference and the valuation of risk assets. The Journal of Finance, 31(4), 1085-1100.
Lee, S. H. & Yeo, S. C. (2016). Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk. Korean Journal of Applied Statistics, 29(4), 753-771.
Liu, Y. (2012). Risk forecasting and portfolio optimization with GARCH, skewed t distributions and multiple timescales, The Florida State University.
Luo, C. (2016). Stochastic Correlation and Portfolio Optimization by Multivariate Garch, University of Toronto (Canada).
Mainik, G., Mitov, G. & Rüschendorf, L. (2015). Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz. Journal of Empirical Finance, 32, 115-134.
Mandelbrot, B. (1963). New methods in statistical economics. Journal of political economy 71(5), 421-440.
Markowitz, H. (1959). Portfolio selection: efficient diversification of investments, Yale university press.
McNeil, A. & Frey, R., Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton university press.
Nieppola, O. (2009). Backtesting value-at-risk models. Department of Economics
Kansantaloustieteen laitos, Archive number: 12049.
Nystrom, K. & Skoglund, J. (2002). Univariate extreme value theory, garch and measures of risk. Preprint, Swedbank.
Pfaff, B. (2016). Financial risk modelling and portfolio optimization with R, John Wiley & Sons.
Raghfar, H. & Ajorlo, N. (2018). Calculation of Value at Risk of Currency Portfolio for a Typical Bank by GARCH-EVT-Copula Method. Iranian Journal of Economic Reaserch, 21(67), 113-141. (in Persian)
Rom, B. M. & Ferguson, K. W. (1994). Post-modern portfolio theory comes of age. The Journal of Investing, 3(3), 11-17.
Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of economic theory 13(3), 341-360.
Sampid, M., Hasim, H. & Dai, H. (2017). Refining value-at-risk estimates using extreme value theory and copulas: a Bayesian approach. Journal of Applied Econometrics, 25(6), 370-392.
Simkowitz, M. A. & Beedles, W. L. (1978). Diversification in a three-moment world. Journal of Financial and Quantitative Analysis, 13(5), 927-941.
Sklar, M. (1959). Fonctions de repartition a n dimensions et leurs marges. Paris, Publication de1’Institut de Statistique de 1’Universite de 229–231.
Talleblo, R. & Davoudi, M.M. (2018). Estimation of Optimal Investment Portfolio Using Value at Risk (VaR) and Expected Shortfall (ES) Models: GARCH-EVT-Copula Approach, Iranian Journal of Economic Research, 18(71), 91-125. (in Persian)
Tang, J., Zhou, C., Yuan, X. & Sriboonchitta, S. (2015). Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model. The Scientific World Journal, 33, 948–955.
Viebig, J. & Poddig, T. (2010). Modeling extreme returns and asymmetric dependence structures of hedge fund strategies using extreme value theory and copula theory. The Journal of Risk, 13(2), 23.
White, H., Kim, T.-H. & Manganelli, S. (2015). VAR for VaR: Measuring tail dependence using multivariate regression quantiles. Journal of Econometrics, 187(1), 169-188.
Xiong, J. X. & Idzorek, T. M. (2011). The impact of skewness and fat tails on the asset allocation decision. Financial Analysts Journal, 67(2), 23-35.
Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), 931-955.