References
Bohluli Khodadadi, M. (2010). Dynamic portfolio management using reinforcement learning. Master's Thesis.University of Economic Sciences, Tehran. (in Persian)
De la Fuente, D., Garrido, A., Laviada, J., & Gómez, A. (2006). Genetic algorithms to optimise the time to make stock market investment. InProceedings of the 8th annual conference on Genetic and evolutionary computation, 1857-1858. ACM.
Dempster M.A.H. & Romahi Y. (2002). Intraday FX Trading: An Evolutionary Reinforcement Learning Approach. In: Yin H., Allinson N., Freeman R., Keane J., Hubbard S. (eds) Intelligent Data Engineering and Automated Learning — IDEAL 2002. IDEAL 2002. Lecture Notes in Computer Science, vol 2412. Springer, Berlin, Heidelberg
Dempster, M. A. H. & Jones, C. M. (2002). Can channel pattern trading be successfully automated? The European Journal of Finance, 8 (3), 275-301.
Dempster, M. A. H., & Jones, C. M. (2000). The profitability of intra-day FX trading using technical indicators. Judge Institute of Management, University of Cambridge.
Dempster, M. A. H., Payne, T. W., Romahi, Y., & Thompson, G. W. P. (2001). Computational learning techniques for intraday FX trading using popular technical indicators. IEEE Transactions on Neural Networks, 12(4), 744-754.
Duda, R. O., Hard, P. E. & Stork, D. G. (2000). Pattern Classification. New York, Wiley-Interscience.
Duvinage, M., Mazza, P., & Petitjean, M. (2013). The intra-day performance of market timing strategies and trading systems based on Japanese candlesticks. Quantitative Finance, 13(7), 1059-1070.
Fan, A. & Palaniswami, M. (2001). Stock selection using support vector machines. Proceedings of the International Joint Conference on Neural Networks, 3, 1793-1798.
Gao, X. & Chan, L. (2000). An algorithm for trading and Portfolio Optimization using Q-Learning and Sharp Ration Maximization. Proceedings of the international conference on neural information processing, 832-837.
Jangmin, O., Lee, J. W., Lee, J., & Zhang, B. T. (2004). Dynamic asset allocation exploiting predictors in reinforcement learning framework. In European Conference on Machine Learning, Springer Berlin Heidelberg, 298-309.
Jangmin, O., Lee, J., Lee, J. W. & Zhang, B. (2005). Dynamic Asset Allocation for Stock Trading Optimized by Evolutionary Computation. IEICE Transactions on Information and Systems, 88 (6), 1217-1223.
Jangmin, O., Lee, J., Lee, J. W. & Zhang, B. T. (2006). Adaptive stock trading with dynamic asset allocation using reinforcement learning. Information Sciences, 176, 2121-2147.
Jones, C. M. (1999). Automated technical foreign exchange trading with high frequency data. Doctoral dissertation, University of Cambridge.
Kendall, S. M., & Ord, K. (1997). Time Series. New York, Oxford.
Lee, J. W., & Zhang, B. T. (2002). Stock trading system using reinforcement learning with cooperative agents. In Proceedings of the Nineteenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc, 451-458.
Lee, J. W., Park, J., Jangmin, O., Lee, J., & Hong, E. (2007). A multiagent approach to Q-learning for daily stock trading. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(6), 864-877.
Lee, J. W., Sung-Dong, K. I. M., Jongwoo, L. E. E., & Jinseok, C. H. A. E. (2003). An intelligent stock trading system based on reinforcement learning. IEICE Transactions on Information and Systems, 86(2), 296-305.
Manahov, V., Hudson, R., & Gebka, B. (2014). Does high frequency trading affect technical analysis and market efficiency? And if so, how? Journal of International Financial Markets, Institutions and Money, 28, 131-157.
Mohamadi, Sh. (2004). Technical analysis in Tehran Stock Exchange. Financial Research Journal, 6(1), 97-129. (in Persian)
Moody, J. & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Transactions on Neural Networks, 12(4), 875, 889.
Neely, C. J., & Weller, P. A. (2003). Intraday technical trading in the foreign exchange market. Journal of International Money and Finance, 22(2), 223-237.
Neuneier, R. (1998). Enhancing Q-learning for optimal asset allocation. Advances in Neural Information Processing Systems, 10, 936-942.
Oliver Mihatsch, R. N. (2002). Risk-Sensitive Reinforcement Learning. Machine Learning, 49, 267-290.
Raei, R. & Bajelan, S. (2007). Detecting and modeling of calendar effects in Tehran Stcok Exchange. Quarterly Journal of The Economic Research, 8 (4), 21-47. (in Persian)
Razmi, J., Julay, F., & Emami, A. (2007). A Bootstrap approach for comparing the profitability of technical analysis indicators – Tehran Stock Exchange. Journal of Economic Researchs, 85, 85-110. (in Persian)
Rodríguez-González, A., García-Crespo, Á., Colomo-Palacios, R., Iglesias, F.G. and Gómez-Berbís, J.M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert systems with applications, 38(9), 11489-11500.
Saad, E. W., Prokhorov, D. V. & Wunsch, D. C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 9(6), 1456-1470.
Samadi, S., Izadinia, N., & Davarzadeh, M. (2010). The application of exploiting technical analysis in Tehran Stock Exchange (an approach to moving average). Journal of Accounting Advances, 2(1), 121-154. (in Persian)
Setayesh, M., Taghizadeh, T., Poormoosa, A., & Abuzari, A. (2008). Feasibility of exploiting technical analysis indicators in predicting the price trend of stocks in Tehran Stock Exchange. Quarterly Basirat, 7, 155-177. (in Persian)
Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MIT Press.
Tanaka-Yamawaki, M., & Tokuoka, S. (2007). Adaptive use of technical indicators for the prediction of intra-day stock prices. Physica A: Statistical Mechanics and its Applications, 383(1), 125-133.
Watkins, C. (1989). Learning from delayed rewards, Ph.D, Cambridge University.
Yamamoto, R. (2012). Intraday technical analysis of individual stocks on the Tokyo Stock Exchange. Journal of Banking & Finance, 36(11), 3033-3047.