- Abasian, E., Mahmoodi, V. and Shaker, I. (2013/ 1391). Forecast Error Analysis of State Tax Revenues in Iran. Journal of Financial Research 13(32).109-132. In Persian.
- Abdulsalam, M. and Abd Manaf, N. (2014). Do trust and power moderate each other in relation to tax compliance? Procedia- Social and Behavioral Sciences 164: 49–54.
- Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R. and Rocha, L. (2013). G-DBSCAN: A GPU Accelerated Algorithm for Density-based Clustering. Procedia Computer Science. 18: 369–378.
- Anil, K.J. and Richard, C.D. (1988). Algorithms for clustering data .Prentice- Hall.
- Bernardino da Silva, B., Leitão Paes, N. and Ospina, R. (2015). The replacement of payroll tax by a tax on revenues: A study of sectorial impacts on the Brazilian economy. Economia. 16:46–59.
6.Lawson, D.J. and Falush, D. (2012). Similarity matrices and clustering algorithms for population identiļ¬cation using genetic data. March 1, in edited.
- Falahpoor, S., Gol arzi, Q. and Fatore chiyan, N. (2014/ 1392). Predicting Stock Price Movement Using Support Vector Machine Based on Genetic Algorithm in Tehran Stock Exchange Market. Journal of Financial Research 15(2).269-288. In Persian.
- Ghosh, S. and Kumar Dubey, S. (2013). Comparative Analysis of K-Means and Fuzzy CMeans Algorithms. (IJACSA) International Journal of Advanced Computer Science and Applications,4(4): 35-39.
- Hasani, M., Shaban, M., Mokhtari Masinaee, M., and Moodi, M. (2012/ 1391). Discussion effective factor on tax capacity and prediction Khorasan Jonobi tax revenues with using ARMA model. Tax administration core research in Khorasan Jonobi state. In Persian.
10. http://www.mathworks.com/help/stats/classificationtree-class.html. (Seen in July 2015)
- 11. Karami, A. and Johansson, R. (2014). Choosing DBSCAN Parameters Automatically using Differential Evolution. International Journal of Computer Applications. 91(7).
12. Lewis, R., Mello, C. and White, A. (2012). Tracking Epileptogenesis Progressions with Layered Fuzzy K-means and K-medoids Clustering. International Conference on Computational Science, ICCS.
13. Mohd Isa, K., Yussof, S. and Mohdali, R. (2014). The role of tax agents in sustaining the Malaysian tax system. sciences, 31:366–371.
14. Nurpratami, I. and Sitanggang, I. (2015). Classification rules for hotspot occurrence using spatial entropy based Decision tree algorithm. Procedia Environmental Sciences 24:120-126.
15. Popa, M. (2014). Taxes, Fees and Obligations in Romania- Main Components of Companies’ Fiscal Costs. Procedia- Social and Behavioral Sciences109:150-154.
16. Radfar, R., Nezafati, N. and YousefiAsl, Y. (2014/ 1393), Classification of bank customer based on data mining algorithms. Journal of IT management .1: 71-90. In Persian.
17. Raee, R., Falahpoor, S. and Ameri matin, H. (2013/ 1391). Financial Risk Assessment Model for LNG Projects, Case Study: Iran LNG Project.Journal of Financial Research 14(2): 47-64. In Persian.
- 18. Rokach, R. and Maimon, O. (2008). Data Mining with Decision Trees: Theory and Applications (Series in Machine Perception and Artificial Intelligence. 69, (USA) World Scientific Publishing Co.
- 19. Wentian, J., Zhong Sheng, G. and En, Z. (2013). Improved K-medoids Clustering Algorithm under Semantic Web. Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013).
25. Wu, R.Sh., Ou, C.S., Chang Sh. and Yen, D.C. (2012). Using Data Mining Technique to Enhance Tax Evasion DetectionPerformance. Expert Systems with Applications, 39: 8769-8777.
- Clusterevaluation http://www.uniweimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-cluster-analysis-evaluation.pdf. Seen at July 2015.