References
Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning in big data platform. Journal of Big Data, 6(1), 1-24.
Ahmadi Kousha, A., Ahmadi, F., Ranjbar, M. & Kordlouie, M. (2024). Validation Indicator Identification and Customer Ranking in Microloans: A Study at Middle East Bank in Iran. Financial Research Journal, 26(2), 399-423. (in Persian)
Ahmadi Sartakhti, F., Hojabr Kiani, K., Hoseini, S. & Memarnejad, A. (2023). Designing a Model for Credit Risk Assessment of Customers for Guarantees Issued by the Export Guarantee Fund of Iran via Artificial Neural Network Model. Financial Research Journal, 25(4), 641- 660. (in Persian)
Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A. & Huang, K. (2017). Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing, 237, 242-254.
Ba, L. J., Kiros, J. R., & Hinton, G. E. (2016). Layer Normalization. arXiv preprint:1607.06450.
https://doi.org/10.48550/arXiv.1607.06450
Çelik, O. & Osmanoglu, U. O. (2019). Comparing to techniques used in customer churn analysis. Journal of Multidisciplinary Developments, 4(1), 30-38.
De Caigny, A., Coussement, K. & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760-772.
Domingos, E., Ojeme, B. & Daramola, O. (2021). Experimental analysis of hyperparameters for deep learning-based churn prediction in the banking sector. Computation, 9(3), 34.
Halibas, A. S., Matthew, A. C., Pillai, I. G., Reazol, J. H., Delvo, E. G. & Reazol, L. B. (2019). Determining the Intervening Effects of Exploratory Data Analysis and Feature Engineering in Telecoms Customer Churn Modelling. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), 1–7.
He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
Jain, H., Yadav, G. & Manoov, R. (2020). Churn prediction and retention in banking, telecom and IT sectors using machine learning techniques. In Advances in Machine Learning and Computational Intelligence: Proceedings of ICMLCI 2019 (pp. 137-156). Singapore: Springer Singapore.
Karvana, K. G. M., Yazid, S., Syalim, A. & Mursanto, P. (2019, October). Customer churn analysis and prediction using data mining models in banking industry. In 2019 international workshop on big data and information security (IWBIS) (pp. 33-38). IEEE.
Khan, Y., Shafiq, S., Naeem, A., Ahmed, S., Safwan, N. & Hussain, S. (2019). Customers churn prediction using artificial neural networks (ANN) in telecom industry. International journal of advanced computer science and applications, 10(9).
Kingma, D. P. & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings.
Lalwani, P., Mishra, M. K., Chadha, J. S. & Sethi, P. (2022). Customer churn prediction system: a machine learning approach. Computing, 104, 271-294.
Li, Y., Hou, B., Wu, Y., Zhao, D., Xie, A. & Zou, P. (2021). Giant fight: Customer churn prediction in traditional broadcast industry. Journal of Business Research, 131, 630-639.
Pustokhina, I. V., Pustokhin, D. A., Nguyen, P. T., Elhoseny, M. & Shankar, K. (2023). Multi-objective rain optimization algorithm with WELM model for customer churn prediction in telecommunication sector. Complex & Intelligent Systems, 9, 3473–3485.
Raeesi, S., Bajalan, S. & Fallahpour, S. (2024). Bank’s Credit Portfolio Optimization Using Actuarial Approach and Artificial Neural Networks. Financial Research Journal, 26(3), 710-733. (in Persian)
Rahimi, S., Rousta, A. & Asayesh, F. (2024). Evaluating the Relationship between Factors Enhancing the Competitiveness of Customer Foreign Currency Services in the Banking Industry. Financial Research Journal, 26(2), 424-446. (in Persian)
Rahman, M. & Kumar, V. (2020). Machine Learning Based Customer Churn Prediction in Banking. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1196–1201.
Sayed, H., Abdel-Fattah, M. A. & Kholief, S. (2018). Predicting potential banking customer churn using apache spark ML and MLlib packages: a comparative study. International Journal of Advanced Computer Science and Applications, 9(11).
Spanoudes, P. & Nguyen, T. (2017). Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company Independent Feature Vectors.
https://arxiv.org/abs/1703.03869
Umayaparvathi, V., & Iyakutti, K. (2017). Automated feature selection and churn prediction using deep learning models. International Research Journal of Engineering and Technology (IRJET), 4(3), 1846-1854.
Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1–9.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, pp. 5998–6008.
Vijaya, J., & Sivasankar, E. (2019). An efficient system for customer churn prediction through particle swarm optimization based feature selection model with simulated annealing. Cluster Computing, 22, 10757-10768.