Afsharirad, E., Alavi, S. E., & Sinaei, H. (2018). Developing an Intelligent Model to Predict Stock Trend Using the Technical Analysis. Financial Research Journal, 20(2), 249-264. (in Presian)
Bianchi, D., Büchner, M., & Tamoni, A. (2020). Bond risk premia with machine learning. WBS Finance Group Research Paper, (252).
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Brogaard, J., & Zareei, A. (2019). Machine learning and the stock market. Available at SSRN 3233119.
Campbell, J. Y., & Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies, 21(4), 1509-1531.
Chen, L., Pelger, M., & Zhu, J. (2019). Deep learning in asset pricing. Available at SSRN 3350138.
Cochrane, J. H. (2011). Presidential address: Discount rates. The Journal of finance, 66(4), 1047-1108.
Dorodi, D., & Abrahimi, S. B. (2017). Presenting a new hybrid method for predicting the Stock Exchange price index. Financial Research Journal, 18 (4), 612-632. (in Persian)
Fakhari, H., Valipour Khatir, M. & Mousavi, M. (2017). Investigating Performance of Bayesian and Levenberg-Marquardt Neural Network in Comparison Classical Models in Stock Price Forecasting. Financial Research Journal, 19 (2), 229-318. (in Persian)
Fallahpour, S., & Hakimian, H. (2019). Paired Trading Strategy Optimization Using the Reinforcement Learning Method: Intraday Data of Tehran Stock Exchange. Financial Research Journal, 21(1), 19- 34. (in Persian)
Fama, E. F., & French, K. R. (1992). The crossâsection of expected stock returns. The Journal of Finance, 47(2), 427-465.
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3-52.
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22.
Giglio, S., & Xiu, D. (2017). Inference on risk Premia in the presence of omitted factors (No. w23527). National Bureau of Economic Research.
Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273.
Harvey, C. R., Liu, Y., & Zhu, H. (2016). … and the cross-section of expected returns. The Review of Financial Studies, 29(1), 5-68.
Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3-12.
Henriksson, R. D., & Merton, R. C. (1981). On market timing and investment performance. II. Statistical procedures for evaluating forecasting skills. Journal of business, 513-533.
Huck, N. (2009). Pairs selection and outranking: An application to the S&P 100 index. European Journal of Operational Research, 196(2), 819-825.
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702.
Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets. A review of theory and empirical work Journal of Finance, 25, 383, 417.
Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
Medsker, L., & Jain, L. C. (Eds.). (1999). Recurrent neural networks: design and applications. CRC press.
Olah, C. (2015). Understanding lstm networks.
Seif, S., Jamshidinavid, B., Ghanbari, M. & Esmaeilpour, M. (2021). Predicting Stock Market Trends of Iran Using Elliott Wave Oscillation and Relative Strength Index. Financial Research Journal, 23(1), 134-157. (in Persian)
Sirignano, J., Sadhwani, A., & Giesecke, K. (2016). Deep learning for mortgage risk. arXiv preprint arXiv:1607.02470.
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.