Application of an optimization model for constructing an index tracker portfolio and considering the uncertainty of model parameters by using of robust optimization approach

Document Type : Research Paper

Authors

1 Assistant Prof. Department of Finance and Insurance, Faculty of Management, University of Tehran, Iran

2 MSc. Student, Financial Engineering Faculty of Management, University of Tehran, Iran

Abstract

index tracking is the process of developing a portfolio that reproduces the performance of an index. The tracker portfolio has relatively good diversity and low turnover and low transaction costs. In this paper we applied a binary programming model for index tracking problem. In this model the number of assets for portfolio construction is defined by portfolio manager. The robust optimization framework is applied for considering data uncertainty of correlation coefficient. The out of sample test demonstrated that considering the data uncertainty by robust optimization framework decrease the tracking error and increase the information ratio of portfolio.

Keywords

Main Subjects


  • Beasley, J.E., Meade, N. & Chang, T.J. (2004). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148 (3): 621-643.
  • Ben-Tal, A., El Ghaoui L. & Nemirovski, A. (2009). Robust optimization, Princeton University Press.
  • Bertsimas, D. & Sim M. (2003). Robust discrete optimization and network flows. Mathematical programming, 98(3-1): 49-71.
  • Bertsimas, D. & Thiele, A. (2006). Robust and data-driven optimization: Modern decision-making under uncertainty. INFORMS Tutorials in Operations Research: Models, Methods, and Applications for Innovative Decision Making.
  • Charnes, A. & Cooper, W.W. (1959). Chance-constrained programming. Management science, 6(1): 73-79.
  • Chen, C. & Roy, H. (2010). Robust portfolio selection for index tracking. Coputers and Operatione research, 39: 829- 837.
  • Cornuejols, G. & Tutuncu, R. (2007). Optimization methods in finance, Cambridge University Press.
  • Dantzig, G.B. (1955). Linear programming under uncertainty. Management science, 1(4-3): 197-206.
  • Elton, E.J., Gruber, M.J. & Spitzer, J. (2006). Improved estimates of correlation coefficients andtheir impact on optimum portfolios. European Financial Management, 12(3): 303-318.
  • Erdogan, E., Goldfarb, D. & Iyengar, G. (2004). Robust portfolio management.
  • Fallahpour, S. & Tondnevis, F. (2014). Robust model for optimal portfolio selection, Journal of Investment Knowledg, 10, 67-84.
  • Gaivoronski, A.A., Krylov, S. and van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of operational research, 163(1): 115-131.
  • Gilli, M. & Këllezi, E. (2002). The threshold accepting heuristic for index tracking. Financial Engineering, E-Commerce and Supply Chain, Springer: 1-18.
  • Jansen, R. & van Dijk, R. (2002). Optimal benchmark tracking with small portfolios. The journal of portfolio management, 28(2): 39-33.
  • Meade, N. & Salkin, G.R. (1990). Developing and maintaining an equity index fund. Journal of the Operational Research Society, 599-607.
  • Roll, R. (1992). A mean/variance analysis of tracking error. Journal of Portfolio Management, 18(4): 13-22.
  • Rudd, A. (1980). Optimal selection of passive portfolios. Financial Management, 57-66.
  • Rudolf, M., Wolter, H.J. & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1): 85-103.
  • Seyfi, A., Hanafizadeh, P. & Navayi, H. (2004). Single period Robust model for portfolio selection. Journal of Financial Researches, 17: 71-95. (in persian)