رابطۀ بین‌دوره‌ای ریسک و بازده با استفاده از همبستگی‌های شرطی پویا و تغییرات زمانی بتا

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکتری اقتصاد مالی، دانشکدۀ اقتصاد دانشگاه تهران، ایران

2 استادیار دانشکدۀ اقتصاد دانشگاه علامه طباطبائی،‌ تهران، ایران

چکیده

در این مقاله‌ مدل قیمت‌گذاری بین‎‌دوره‌ای، دارایی‌های سرمایه‌ای در بورس اوراق بهادار تهران بررسی شده است. همبستگی بین بازده پورتفولیوها و بازده بازار‌ با اجرای روش همبستگی‌های شرطی پویا تخمین زده شد و بتا که در مدل بین‌‎دوره‌ای، ضریب ریسک‎گریزی محسوب می‌شود و در طول زمان تغییر می‎کند، به‎کمک روش کالمن فیلتر برآورد شد. یافته‎های پژوهش، ضرایب ریسک‌گریزی نسبی را در مدل قیمت‌گذاری بین‎‌دوره‌ای دارایی‌های سرمایه‌ای بین 013/0 و 28/0 (متوسط 20/0) نشان می‎دهد که با توجه به بی‌معنا بودن عرض ‌از مبدأ در اکثر معادلات، می‎توان گفت در بورس اوراق بهادار تهران، مدل‌ قیمت‌گذاری بین‎‌دوره‌ای دارایی‌های سرمایه‌ای برقرار است. همچنین دارایی‌هایی که با تلاطم شرطی بازار همبستگی زیادی دارند،‌ در دورۀ بعد از بازدۀ انتظاری کمتری برخوردارند. به بیانی،‌ ریسک تلاطم بازار بر بازدۀ انتظاری چنین‌ دارایی‌هایی اثر منفی می‎گذارد. دارایی‌هایی که با رشد قیمت ارز همبستگی زیادی دارند، ‌پاداش ریسک مثبتی اضافه بر پاداش ریسک بازار کسب می‌کنند، بنابراین در دورۀ مبادلاتی بعد، بازده انتظاری بیشتری به‎دست می‎آورند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The intertemporal relationship between risk and return with dynamic conditional correlation and time -varying beta

نویسندگان [English]

  • Hojjatollah Bagherzadeh 1
  • Ali Asghar Salem 2
1 Ph.D., Financial Economics, University of Tehran, Iran
2 Assistant Prof., Economics Department, Allameh Tabatabaee University, Tehran, Iran
چکیده [English]

The current paper examines intertemporal capital asset pricing model in Iran’s Stock Market. Dynamic conditional correlation was used to estimate conditional variance and covariance portfolios with market returns. Time varying beta is estimated by Kalman Filter method. Based on the obtained results, risk aversion coefficients were between 0.013 and 0.28 and the average was 0.20. Significance of risk aversion and insignificance of intercepts revealed that there is ICAPM in Iran’s Stock Market.  The result also showed that assets with high correlation with market conditional volatilities have low expected returns in the next transaction period. In addition, assets having high correlation with exchange rate growth are induced by additional risk premium in exchange rate risks and will have high expected returns in the next transaction period.

کلیدواژه‌ها [English]

  • dynamic conditional correlation
  • dynamic conditional variances and covariances
  • intertemporal capital asset pricing model
  • Kalman Filter
Adrian, T. & Franconia, F. (2009). Learning about beta: time-varying factor loadings, expected returns, and the conditional CAPM. Journal of Empirical Finance, 16 (4): 537-556.
Ang, A. & Chen, J. (2007). CAPM over the long run: 1926–2001. Journal of Empirical Finance, 14 (1): 1–40.
Bali, T., Cakici, N., Yan, X. & Zhang, Z. (2005). Does idiosyncratic risk really matter? The Journal of Finance, 60 (2): 905-929.
 Bali, T.G., (2008). The intertemporal relation between expected returns and risk. Journal of Financial Economics, 87 (1): 101-131.
Bali, T.G. & Engle, R.T. (2010). The intertemporal capital asset pricing model with dynamic conditional correlations. Journal of Monetary Economic, 57 (4): 377-390.
Bollerslev, T. (1990). Modeling the coherence in short-Run nominal exchange rates: A multivariate generalized ARCH model. Review of Economics and Statistics, 72 (3): 498-505.
Bollerslev, T., Engle, R.F. & Wooldridge, M. (1988). A capital asset pricing model with time varying covariances. The Journal of Political Economy, 96 (1): 116-131.
Campbell, J. Y., (1993). Intertemporal asset pricing without consumption data. The American Economic Review, 83 (3): 487- 512.
Engle, R., (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20 (3): 339-350.
Engle, R., (2009). Anticipating correlations. A new Paradigm for risk management . Princeton University Press, USA.
Epstein, L. G. & Zin, S. (1989). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica, 57 (4): 937-969.
Epstein, L. G. & Zin, S. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99 (2): 263-286.
Fama, E. F. & French, K. R. (1992). The cross section of expected stock returns. The Journal of Finance, 47 (2): 427- 465.
Fama, E. F. & French, K. R. (1993). Common risk factor in the returns on stocks and bonds. Journal of Financial Economics, 33 (1): 3-56.
French, K., Schwert, G. & Stambaugh, R. (1987). Expected stock returns and volatility. Journal of Financial Economics, 19 (1): 3-29.
Ghysels, E., Santa-Clara, P. & Valkanov, R. (2005). There is a risk-return trade-off after all. Journal of Financial Economics, 76 (3) 509-548.
Giovannini, A. & Weil, P., (1989). Risk aversion and intertemporal substitution in the capital asset pricing model. NBER Working Paper Series, No. 2824.
Glosten, L., Jagannathan, R. & Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48 (5): 1779 -1801.
Goyal, A. & Santa- Clara, P. (2003). Idiosyncratic risk Matters! The Journal of Finance, 58 (3): 975- 1007.
Hardouvelis, G. A., Kim D. & Wizman T.A., (1996). Asset pricing models with and without consumption data: An empirical evaluation. Journal of Empirical Finance, 3 (3): 267-301.
Harrison, P. & Zhang, H. (1999). An Investigation Risk and Return Relation at Long Horizon. The Review of Economics and Statistics, 81 (3): 399-408.
Jegadeesh, N. & Titman, S. (1993). Returns to buying winners and selling losers: implications for stock market efficiency. Journal of Finance, 48 (1): 65–91.
Lewellen, J. & Nagel, S. (2006). The conditional CAPM does not explain asset-pricing anomalies. Journal of Financial Economics, 82 (2): 289–314.
Lundblad, C. (2007). The risk - return tradeoff in the long run: 1836–2003. Journal of Financial Economics, 85 (1): 123–150.
Merton, R., (1973). An intertemporal capital asset pricing model. Econometrica, 41 (5): 867-887.
Raee, R., Farhadi, R. & Shirvani, A. (2011). Intertemporal relationship between return and risk; Evidence of Intertemporal capital asset pricing model. Accounting and financial management perspective. 2(2):125-140. (in Persian)
Sabunchi, M., Fallahpur, S. & Mohammadi, Sh. (2014). Comparison of conditional capital asset pricing model with time - varying beta and the standard capital asset pricing model. Published online: http://jfr.ut.ac.ir/article. (in Persian)
Tehrani, R. & SadeghiSharir, S. (2004). Conditional capital asset pricing model in Tehran stock market. Financial research, 18 (2): 41-75. (in Persian)
Turner, C., Startz, R. & Nelson, C. (1989). A markov model of heteroskedasticity, risk, and learning in the stock market. Journal of Financial Economics, 25 (1): 3-22.
Weil, P. (1989). The equity premium puzzle and the risk-free rate puzzle. Journal of Monetary Economics, 24 (3): 401- 421.
Weil, P. (1990). Non- expected utility in macroeconomics. Quarterly Journal of Economics, 105 (1): 29-42.